文章目录
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。
损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。
一、分类问题
1. 0-1损失函数(zero-one loss)
0-1损失是指预测值和目标值不相等为1, 否则为0:
L ( Y , f ( X ) ) = { 1 , Y ≠ f ( X ) 0 , Y = f ( X ) L(Y, f(X))=\left\{\begin{array}{l} 1, Y \neq f(X) \\ 0, Y=f(X) \end{array}\right. L(Y,f(X))={
1,Y=f(X)0,Y=f(X)
特点:
- 0-1损失函数直接对应分类判断错误的个数,但是它是一个非凸函数,不太适用.
- 感知机就是用的这种损失函数。但是相等这个条件太过严格,因此可以放宽条件,即满足 ∣ Y − f ( x ) ∣ < T |Y-f(x)|<T ∣Y−f(x)∣<T时认为相等,
L ( Y , f ( X ) ) = { 1 , ∣ Y − f ( X ) ∣ ≥ T 0 , ∣ Y = f ( X ) ∣ < T L(Y, f(X))=\left\{\begin{array}{l} 1,|Y-f(X)| \geq T \\ 0,|Y=f(X)|<T \end{array}\right. L(Y,f(X))={ 1,∣Y−f(X)∣≥T0,∣Y=f(X)∣<T
2. Hinge 损失函数
Hinge损失函数标准形式如下:
L ( y , f ( x ) ) = max ( 0 , 1 − y f ( x ) ) L(y, f(x))=\max (0,1-y f(x)) L(y,f(x))=max(0,1−yf(x))
特点:
- hinge损失函数表示如果被分类正确,损失为0,否则损失就为 1 − y f ( x ) 1-y f(x) 1−yf(x) 。SVM就是使用这个损失函数。
- 一般的 f ( x ) f(x) f(x)是预测值,在-1到1之间, y y y是目标值(-1或1)。其含义是, f ( x ) f(x) f(x)的值在-1和+1之间就可以了,并不鼓励 ∣ f ( x ) ∣ > 1 |f(x)|>1 ∣f(x)∣>