机器学习中各种损失函数对比总结

本文详细介绍了分类问题中的零-一损失、Hinge损失、log对数损失、Logistic损失及交叉熵损失,以及回归问题中的MAE、MSE、Huber损失。探讨了交叉熵与最大似然函数的关系,并解释了为何sigmoid激活下选择交叉熵而非均方误差。涵盖了常见问题解答,帮助理解损失函数在不同模型中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。

损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。

一、分类问题

1. 0-1损失函数(zero-one loss)

0-1损失是指预测值和目标值不相等为1, 否则为0:
L ( Y , f ( X ) ) = { 1 , Y ≠ f ( X ) 0 , Y = f ( X ) L(Y, f(X))=\left\{\begin{array}{l} 1, Y \neq f(X) \\ 0, Y=f(X) \end{array}\right. L(Y,f(X))={ 1,Y=f(X)0,Y=f(X)
特点:

  1. 0-1损失函数直接对应分类判断错误的个数,但是它是一个非凸函数,不太适用.
  2. 感知机就是用的这种损失函数。但是相等这个条件太过严格,因此可以放宽条件,即满足 ∣ Y − f ( x ) ∣ < T |Y-f(x)|<T Yf(x)<T时认为相等,
    L ( Y , f ( X ) ) = { 1 , ∣ Y − f ( X ) ∣ ≥ T 0 , ∣ Y = f ( X ) ∣ < T L(Y, f(X))=\left\{\begin{array}{l} 1,|Y-f(X)| \geq T \\ 0,|Y=f(X)|<T \end{array}\right. L(Y,f(X))={ 1,Yf(X)T0,Y=f(X)<T

2. Hinge 损失函数

Hinge损失函数标准形式如下:
L ( y , f ( x ) ) = max ⁡ ( 0 , 1 − y f ( x ) ) L(y, f(x))=\max (0,1-y f(x)) L(y,f(x))=max(0,1yf(x))
特点:

  1. hinge损失函数表示如果被分类正确,损失为0,否则损失就为 1 − y f ( x ) 1-y f(x) 1yf(x) 。SVM就是使用这个损失函数。
  2. 一般的 f ( x ) f(x) f(x)是预测值,在-1到1之间, y y y是目标值(-1或1)。其含义是, f ( x ) f(x) f(x)的值在-1和+1之间就可以了,并不鼓励 ∣ f ( x ) ∣ > 1 |f(x)|>1 f(x)>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值