斯莱特 Slater's condition

Slater's condition

From Wikipedia, the free encyclopedia

In mathematicsSlater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem. This is a specific example of a constraint qualification. In particular, if Slater's condition holds for the primal problem, then the duality gap is 0, and if the dual value is finite then it is attained.[1]

[edit]Mathematics

Given the problem

 \text{Minimize }\; f_0(x)
 \text{subject to: }\
 f_i(x) \le 0 , i = 1,\ldots,m
 Ax = b

with f_0,\ldots,f_m convex (and therefore a convex optimization problem). Then strong duality holds if there exists an x \in \operatorname{relint}(D) (where relint is the relative interior and D = \cap_{i = 0}^m \operatorname{dom}(f_i)) such that

f_i(x) < 0, i = 1,\ldots,m and
Ax = b.\, [2]

If the first k constraints, f_1,\ldots,f_k are linear functions, then strong duality holds if there exists an x \in \operatorname{relint}(D) such that

f_i(x) \le 0, i = 1,\ldots,k,
f_i(x) < 0, i = k+1,\ldots,m, and
Ax = b.\, [2]

[edit]Generalized Inequalities

Given the problem

 \text{Minimize }\; f_0(x)
 \text{subject to: }\
 f_i(x) \le_{K_i} 0 , i = 1,\ldots,m
 Ax = b

where f_0 is convex and f_i is K_i-convex for each i. Then Slater's condition says that if there exists an x \in \operatorname{relint}(D) such that

f_i(x) <_{K_i} 0, i = 1,\ldots,m and
Ax = b

then strong duality holds.[2]

[edit]References

  1. ^ Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 978-0-387-29570-1.
  2. a b c Boyd, Stephen; Vandenberghe, Lieven (2004) (pdf). Convex Optimization. Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved October 3, 2011.
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值