MTPA数理推导

转矩方程与电流方程

T e = f ( I s d , I s q ) I s = L ( I s d , I s q ) \begin{array}{l} {T_e} = f({I_{sd}},{I_{sq}})\\ {I_s} = L({I_{sd}},{I_{sq}}) \end{array} Te=f(Isd,Isq)Is=L(Isd,Isq)

求解方案有两种, 直接代入, 然后求一元方程导数, 求得驻点, 然后取得最值; 第二种采用拉格郎日乘数法.
本文推导第二种:拉格朗日乘数法。

其实就是求多元函数, 在D封闭区间的最值问题, 而MTPA要求的, 就是二元函数.

可以将 I s = L ( I s d , I s q ) {I_s} = L({I_{sd}},{I_{sq}}) Is=L(Isd,Isq)看作封闭区间, 亦可以将 T e = f ( I s d , I s q ) {T_e} = f({I_{sd}},{I_{sq}}) Te=f(Isd,Isq)看作封闭区间.

亦即, 给定Te,能够求出最小的Is; 或者给定Is,能够求出最大的Te
再根本, 我们要求的是Id与Iq的对应关系.

T e = 3 2 p ( φ f I s q + ( L d − L q ) I s d I s q ) I s 2 = I s d 2 + I s q 2 \begin{array}{l} {T_e} = \frac{3}{2}p({\varphi _f}{I_{sq}} + ({L_d} - {L_q}){I_{sd}}{I_{sq}})\\ {I_s}^2 = {I_{sd}}^2 + {I_{sq}}^2 \end{array} Te=23p(φfIsq+(LdLq)IsdIsq)Is2=Isd2+Isq2

对上式, 分别对Isd、Isq求偏导
∂ T e I s d = 3 2 p ( L d − L q ) I s q ∂ T e I s q = 3 2 p ( φ f + ( L d − L q ) I s d ) ∂ I s I s d = 2 I s d I s d 2 + I s q 2 ∂ I s I s q = 2 I s q I s d 2 + I s q 2 \begin{array}{l} \frac{ {\partial {T_e}}}{ { {I_{sd}}}} = \frac{3}{2}p({L_d} - {L_q}){I_{sq}}\\ \frac{ {\partial {T_e}}}{ { {I_{s{\rm{q}}}}}} = \frac{3}{2}p({\varphi _f} + ({L_d} - {L_q}){I_{sd}})\\ \frac{ {\partial {I_s}}}{ { {I_{sd}}}} = \frac{ {2{I_{sd}}}}{ {\sqrt { {I_{sd}}^2 + {I_{sq}}^2} }}\\ \frac{ {\partial {I_s}}}{ { {I_{s{\rm{q}}}}}} = \frac{ {2{I_{sq}}}}{ {\sqrt { {I_{sd}}^2 + {I_{sq}}^2} }} \end{array} IsdTe=23p(LdLq)IsqIsqTe=23p(φ

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值