有限差分系数推导

函数 f f f在点 x x x处的导数定义为极限如下:
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h \begin{equation} \begin{aligned} f^{'}(x)=\lim_{h\rightarrow0}{\dfrac{f(x+h)-f(x)}{h}} \end{aligned} \end{equation} f(x)=h0limhf(x+h)f(x)也就是说,这个 f ( x + h ) − f ( x ) h {\dfrac{f(x+h)-f(x)}{h}} hf(x+h)f(x)差分是导数 f ′ ( x ) f'(x) f(x)的近似, h h h越小,导数的近似效果越好。近似结果的误差与 h h h有关,它们的关系可以通过泰勒公式给出:
f ( x + h ) = f ( x ) + h f ′ ( x ) + h 2 f ′ ′ ( ξ ) 2 ! \begin{equation} \begin{aligned} f(x+h)=f(x)+hf^{'}(x)+h^2\dfrac{f^{''}(\xi)}{2!} \end{aligned} \end{equation} f(x+h)=f(x)+hf(x)+h22!f′′(ξ)其中 ξ \xi ξ是介于 x x x x + h x+h x+h之间的数,由此我们得到误差与 h h h的关系:
f ( x + h ) − f ( x ) h − f ′ ( x ) = h f ′ ′ ( ξ ) 2 \begin{equation} \begin{aligned} \dfrac{f(x+h)-f(x)}{h}-f^{'}(x)=h\dfrac{f^{''}(\xi)}{2} \end{aligned} \end{equation} hf(x+h)f(x)f(x)=h2f′′(ξ)通过该式可以看出,误差的大小与 h h h的一阶成正比,由此我们称该格式是一阶近似差分格式。
h h h大于0时,令 h = Δ x h=\Delta x h=Δx,其中 Δ x \Delta x Δx是一个有限的正数,然后我们称:
f ( x + Δ x ) − f ( x ) Δ x \begin{equation} \begin{aligned} \dfrac{f(x+\Delta x)-f(x)}{\Delta x} \end{aligned} \end{equation} Δxf(x+Δx)f(x)为导数 f ′ ( x ) f^{'}(x) f(x)的一阶 O ( Δ x ) \Omicron(\Delta x) O(Δx)前向差分形式,当 h h h小于0时,令 h = − Δ x h=-\Delta x h=Δx,可以得到:
f ( x + h ) − f ( x ) h = f ( x ) − f ( x − Δ x ) Δ x \begin{equation} \begin{aligned} \dfrac{f(x+h)-f(x)}{h}=\dfrac{f(x)-f(x-\Delta x)}{\Delta x} \end{aligned} \end{equation} hf(x+h)f(x)=Δxf(x)f(xΔx)称上式为导数 f ′ ( x ) f^{'}(x) f(x)的一阶 O ( Δ x ) \Omicron(\Delta x) O(Δx)后向差分形式。通过组合不同形式的泰勒展开形式,我们得到各种导数的不同差分格式,例如:
f ( x + Δ x ) = f ( x ) + Δ x f ′ ( x ) + Δ x 2 f ′ ′ ( x ) 2 ! + Δ x 3 f ′ ′ ′ ( ξ 1 ) 3 ! , 其中 ξ 1 ∈ ( x , x + Δ x ) ① f ( x − Δ x ) = f ( x ) − Δ x f ′ ( x ) + Δ x 2 f ′ ′ ( x ) 2 ! − Δ x 3 f ′ ′ ′ ( ξ 2 ) 3 ! , 其中 ξ 2 ∈ ( x , x + Δ x ) ② \begin{equation} \begin{aligned} f(x+\Delta x)=f(x)+\Delta xf^{'}(x)+\Delta x^2\dfrac{f^{''}(x)}{2!}+\Delta x^3\dfrac{f^{'''}(\xi_1)}{3!},\quad 其中\xi_1\in(x,x+\Delta x)\qquad ① \\ f(x-\Delta x)=f(x)-\Delta xf^{'}(x)+\Delta x^2\dfrac{f^{''}(x)}{2!}-\Delta x^3\dfrac{f^{'''}(\xi_2)}{3!},\quad 其中\xi_2\in(x,x+\Delta x)\qquad ② \end{aligned} \end{equation} f(x+Δx)=f(x)+Δxf(x)+Δx22!f′′(x)+Δx33!f′′′(ξ1),其中ξ1(x,x+Δx)f(xΔx)=f(x)Δxf(x)+Δx22!f′′(x)Δx33!f′′′(ξ2),其中ξ2(x,x+Δx)用①-②式,可以得到
f ( x + Δ x ) − f ( x − Δ x ) = 2 Δ x f ′ ( x ) + Δ x 3 f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) 6 f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x − f ′ ( x ) = Δ x 2 f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) 12 \begin{equation} \begin{aligned} f(x+\Delta x)-f(x-\Delta x)=2\Delta xf^{'}(x)+\Delta x^3\dfrac{f^{'''}(\xi_1)+f^{'''}(\xi_2)}{6}\\ \dfrac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}-f^{'}(x)=\Delta x^2\dfrac{f^{'''}(\xi_1)+f^{'''}(\xi_2)}{12} \end{aligned} \end{equation} f(x+Δx)f(xΔx)=xf(x)+Δx36f′′′(ξ1)+f′′′(ξ2)xf(x+Δx)f(xΔx)f(x)=Δx212f′′′(ξ1)+f′′′(ξ2)这里误差与 Δ x 2 \Delta x^2 Δx2成正比, f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x \dfrac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x} xf(x+Δx)f(xΔx)为导数 f ′ ( x ) f^{'}(x) f(x)的二阶或 O ( Δ x 2 ) \Omicron(\Delta x^2) O(Δx2)的中心差分近似。
如果我们使用有更多项的展开式,就可以推导出高阶近似,在这里求解二次导数的二阶和四阶中心差分近似格式:

二阶中心差分近似格式

f ( x + Δ x ) = f ( x ) + Δ x f ′ ( x ) + Δ x 2 f ′ ′ ( x ) 2 ! + Δ x 3 f ′ ′ ′ ( x ) 3 ! + Δ x 4 f ( 4 ) ( ξ 1 ) 4 ! ① f ( x − Δ x ) = f ( x ) − Δ x f ′ ( x ) + Δ x 2 f ′ ′ ( x ) 2 ! − Δ x 3 f ′ ′ ′ ( x ) 3 ! + Δ x 4 f ( 4 ) ( ξ 2 ) 4 ! ② \begin{equation} \begin{aligned} f(x+\Delta x)&=f(x)+\Delta xf^{'}(x)+\Delta x^2\dfrac{f^{''}(x)}{2!}+\Delta x^3\dfrac{f^{'''}(x)}{3!}+\Delta x^4\dfrac{f^{(4)}(\xi_1)}{4!}&\qquad ① \\ f(x-\Delta x)&=f(x)-\Delta xf^{'}(x)+\Delta x^2\dfrac{f^{''}(x)}{2!}-\Delta x^3\dfrac{f^{'''}(x)}{3!}+\Delta x^4\dfrac{f^{(4)}(\xi_2)}{4!}&\qquad ② \\ \end{aligned} \end{equation} f(x+Δx)f(xΔx)=f(x)+Δxf(x)+Δx22!f′′(x)+Δx33!f′′′(x)+Δx44!f(4)(ξ1)=f(x)Δxf(x)+Δx22!f′′(x)Δx33!f′′′(x)+Δx44!f(4)(ξ2)计算 ( ① + ② ) (①+②) (+),可得:
[ f ( x + Δ x ) + f ( x − Δ x ) ] = 2 f ( x ) + Δ x 2 f ′ ′ ( x ) + Δ x 4 [ f ( 4 ) ( ξ 1 ) + f ( 4 ) ( ξ 2 ) ] 24 f ( x + Δ x ) − 2 f ( x ) + f ( x − Δ x ) Δ x 2 − f ′ ′ ( x ) = Δ x 2 [ f ( 4 ) ( ξ 1 ) + f ( 4 ) ( ξ 2 ) ] 24 \begin{equation} \begin{aligned} &\left[f(x+\Delta x)+f(x-\Delta x)\right]=2f(x)+\Delta x^2f^{''}(x)+\Delta x^4\dfrac{\left[f^{(4)}(\xi_1)+f^{(4)}(\xi_2)\right]}{24}\\ &\dfrac{f(x+\Delta x)-2f(x)+f(x-\Delta x)}{\Delta x^2}-f^{''}(x)=\Delta x^2\dfrac{\left[f^{(4)}(\xi_1)+f^{(4)}(\xi_2)\right]}{24} \end{aligned} \end{equation} [f(x+Δx)+f(xΔx)]=2f(x)+Δx2f′′(x)+Δx424[f(4)(ξ1)+f(4)(ξ2)]Δx2f(x+Δx)2f(x)+f(xΔx)f′′(x)=Δx224[f(4)(ξ1)+f(4)(ξ2)]由此我们得到了二次导数 f ′ ′ ( x ) f{''}(x) f′′(x)的二阶中心差分近似格式为
f ( x + Δ x ) − 2 f ( x ) + f ( x − Δ x ) Δ x 2 \begin{equation} \dfrac{f(x+\Delta x)-2f(x)+f(x-\Delta x)}{\Delta x^2} \end{equation} Δx2f(x+Δx)2f(x)+f(xΔx)

四阶中心差分近似格式

f ( x + Δ x ) = f ( x ) + Δ x f ′ ( x ) + Δ x 2 f ′ ′ ( x ) 2 ! + Δ x 3 f ′ ′ ′ ( x ) 3 ! + Δ x 4 f ( 4 ) ( 4 ) 4 ! + Δ x 5 f ( 5 ) ( x ) 5 ! + Δ x 6 f ( 6 ) ( ξ 1 ) 6 ! ① f ( x − Δ x ) = f ( x ) − Δ x f ′ ( x ) + Δ x 2 f ′ ′ ( x ) 2 ! − Δ x 3 f ′ ′ ′ ( x ) 3 ! + Δ x 4 f ( 4 ) ( 4 ) 4 ! − Δ x 5 f ( 5 ) ( x ) 5 ! + Δ x 6 f ( 6 ) ( ξ 2 ) 6 ! ② f ( x + 2 Δ x ) = f ( x ) + 2 Δ x f ′ ( x ) + 4 Δ x 2 f ′ ′ ( x ) 2 ! + 8 Δ x 3 f ′ ′ ′ ( x ) 3 ! + 16 Δ x 4 f ( 4 ) ( 4 ) 4 ! + 32 Δ x 5 f ( 5 ) ( x ) 5 ! + 64 Δ x 6 f ( 6 ) ( ξ 3 ) 6 ! ③ f ( x − 2 Δ x ) = f ( x ) − 2 Δ x f ′ ( x ) + 4 Δ x 2 f ′ ′ ( x ) 2 ! − 8 Δ x 3 f ′ ′ ′ ( x ) 3 ! + 16 Δ x 4 f ( 4 ) ( 4 ) 4 ! − 32 Δ x 5 f ( 5 ) ( x ) 5 ! + 64 Δ x 6 f ( 6 ) ( ξ 4 ) 6 ! ④ \begin{equation} \begin{aligned} f(x+\Delta x)&=f(x)+\Delta xf^{'}(x)+\Delta x^2\dfrac{f^{''}(x)}{2!}+\Delta x^3\dfrac{f^{'''}(x)}{3!}+\Delta x^4\dfrac{f^{(4)}(4)}{4!}+\Delta x^5\dfrac{f^{(5)}(x)}{5!}+\Delta x^6\dfrac{f^{(6)}(\xi_1)}{6!}&\qquad ① \\ f(x-\Delta x)&=f(x)-\Delta xf^{'}(x)+\Delta x^2\dfrac{f^{''}(x)}{2!}-\Delta x^3\dfrac{f^{'''}(x)}{3!}+\Delta x^4\dfrac{f^{(4)}(4)}{4!}-\Delta x^5\dfrac{f^{(5)}(x)}{5!}+\Delta x^6\dfrac{f^{(6)}(\xi_2)}{6!}&\qquad ② \\ f(x+2\Delta x)&=f(x)+2\Delta xf^{'}(x)+4\Delta x^2\dfrac{f^{''}(x)}{2!}+8\Delta x^3\dfrac{f^{'''}(x)}{3!}+16\Delta x^4\dfrac{f^{(4)}(4)}{4!}+32\Delta x^5\dfrac{f^{(5)}(x)}{5!}+64\Delta x^6\dfrac{f^{(6)}(\xi_3)}{6!}&\qquad ③ \\ f(x-2\Delta x)&=f(x)-2\Delta xf^{'}(x)+4\Delta x^2\dfrac{f^{''}(x)}{2!}-8\Delta x^3\dfrac{f^{'''}(x)}{3!}+16\Delta x^4\dfrac{f^{(4)}(4)}{4!}-32\Delta x^5\dfrac{f^{(5)}(x)}{5!}+64\Delta x^6\dfrac{f^{(6)}(\xi_4)}{6!}&\qquad ④ \end{aligned} \end{equation} f(x+Δx)f(xΔx)f(x+x)f(xx)=f(x)+Δxf(x)+Δx22!f′′(x)+Δx33!f′′′(x)+Δx44!f(4)(4)+Δx55!f(5)(x)+Δx66!f(6)(ξ1)=f(x)Δxf(x)+Δx22!f′′(x)Δx33!f′′′(x)+Δx44!f(4)(4)Δx55!f(5)(x)+Δx66!f(6)(ξ2)=f(x)+xf(x)+x22!f′′(x)+x33!f′′′(x)+16Δx44!f(4)(4)+32Δx55!f(5)(x)+64Δx66!f(6)(ξ3)=f(x)xf(x)+x22!f′′(x)x33!f′′′(x)+16Δx44!f(4)(4)32Δx55!f(5)(x)+64Δx66!f(6)(ξ4)计算 16 × ( ① + ② ) − ( ③ + ④ ) 16\times(①+②)-(③+④) 16×(+)(+),可得:
16 [ f ( x + Δ x ) + f ( x − Δ x ) ] − [ f ( x + 2 Δ x ) + f ( x − 2 Δ x ) ] = 30 f ( x ) + 12 Δ x 2 f ′ ′ ( x ) + Δ x 6 [ f ( 6 ) ( ξ 1 ) + f ( 6 ) ( ξ 2 ) ] − [ f ( 6 ) ( ξ 3 ) + f ( 6 ) ( ξ 4 ) ] 720 − f ( x + 2 Δ x ) + 16 f ( x − Δ x ) − 30 f ( x ) + 16 f ( x + Δ x ) − f ( x − 2 Δ x ) 12 Δ x 2 − f ′ ′ ( x ) = Δ x 4 [ f ( 6 ) ( ξ 1 ) + f ( 6 ) ( ξ 2 ) ] − [ f ( 6 ) ( ξ 3 ) + f ( 6 ) ( ξ 4 ) ] 8640 \begin{equation} \begin{aligned} &16\left[f(x+\Delta x)+f(x-\Delta x)\right]-\left[f(x+2\Delta x)+f(x-2\Delta x)\right]=30f(x)+12\Delta x^2f^{''}(x)+\Delta x^6\dfrac{\left[f^{(6)}(\xi_1)+f^{(6)}(\xi_2)\right]-\left[f^{(6)}(\xi_3)+f^{(6)}(\xi_4)\right]}{720}\\ &\dfrac{-f(x+2\Delta x)+16f(x-\Delta x)-30f(x)+16f(x+\Delta x)-f(x-2\Delta x)}{12\Delta x^2}-f^{''}(x)=\Delta x^4\dfrac{\left[f^{(6)}(\xi_1)+f^{(6)}(\xi_2)\right]-\left[f^{(6)}(\xi_3)+f^{(6)}(\xi_4)\right]}{8640} \end{aligned} \end{equation} 16[f(x+Δx)+f(xΔx)][f(x+x)+f(xx)]=30f(x)+12Δx2f′′(x)+Δx6720[f(6)(ξ1)+f(6)(ξ2)][f(6)(ξ3)+f(6)(ξ4)]12Δx2f(x+x)+16f(xΔx)30f(x)+16f(x+Δx)f(xx)f′′(x)=Δx48640[f(6)(ξ1)+f(6)(ξ2)][f(6)(ξ3)+f(6)(ξ4)]由此我们得到了二次导数 f ′ ′ ( x ) f{''}(x) f′′(x)的四阶中心差分近似格式为
− f ( x + 2 Δ x ) + 16 f ( x − Δ x ) − 30 f ( x ) + 16 f ( x + Δ x ) − f ( x − 2 Δ x ) 12 Δ x 2 \begin{equation} \dfrac{-f(x+2\Delta x)+16f(x-\Delta x)-30f(x)+16f(x+\Delta x)-f(x-2\Delta x)}{12\Delta x^2} \end{equation} 12Δx2f(x+x)+16f(xΔx)30f(x)+16f(x+Δx)f(xx)

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值