专题2(附篇):平面问题的差分解之差分公式的推导

因为实际工程中几乎不可能找到弹性力学模型求解时的偏微分方程的解析解,所以人们就想到用泰勒级数把求解偏微分方程的问题改为求解代数方程的问题来近似。又因为不同的差分方法会带来不同的求解速度和精度,而速度和精度通常是一对矛盾体,所以在实际应用中对于差分公式的推导及理解就很重要。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
本专题是对科学院院士徐芝纶(已故)所著《弹性力学》(第四版上册)平面问题基本理论的一些理解。这套书叙述十分严谨,且深入浅出,且排版十分仔细,几乎没有笔误或错误,是一套性价比极高的弹性力学教材。平面问题的基本理论是整个弹性力学的基石,而实际工程中基本是采用差分法来求解模型,所以对于工程师,最重要的是先弄懂建模和求解这两部分内容,然后再转换为代码。现将自己的一点理解分享出来供大家交流探讨。

【有限差分初学者必备】如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值 ,直到与初始值有关。前面各层若有舍入误,必然影响到后面各层的值,如果误的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山高月小 水落石出

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值