Python及深度学习环境相关

一、python一共有几种创建虚拟环境的方式?

1、使用venv模块(Python 3内置):Python 3.3及更高版本包含了venv模块,可以用于创建轻量级虚拟环境,每个虚拟环境都有自己独立的python解释器和第三方包;可以使用以下命令创建虚拟环境:

python -m venv myenv

2、 使用virtualenv:虚拟环境管理器virtualenv是一个独立的Python包,可以在Python 2和Python 3上使用。需要安装virtualenv,然后可以使用它创建虚拟环境:

pip install virtualenv

virtualenv myenv

3、 使用conda:一个用于科学计算的包管理器和环境管理器,可以在不同平台安装和管理多个版本的python和其他语言的软件包;使用Anaconda或Miniconda,可以使用conda命令创建虚拟环境。例如:

 conda create --name myenv

 

 二、pip是什么意思?

pip是 Python 包管理器的名称,它用于在 Python 环境中安装、升级、卸载、列出python包(pip install ***、pip list ***),创建和管理虚拟环境(pip结合venv或virtualenv创建管理虚拟环境)。

三、pip与venv、virtualenv、conda分别是什么关系?

  1. pip:

    • 作用pip 是 Python 的包管理器,用于安装、升级和卸载 Python 包。
    • 关系pip 可以与 venvvirtualenv 结合使用,用于在虚拟环境中安装和管理包,以隔离项目的依赖关系。
    • 注意pip 通常与虚拟环境管理工具一起使用,但它本身不用于创建虚拟环境。
  2. venv:

    • 作用venv 是 Python 3 内置的虚拟环境创建工具,是python自带的一个模块,用于创建轻量级虚拟环境,每个虚拟环境都有自己独立的python解释器和第三方包;
    • 关系venvpip 结合使用,可以在虚拟环境中使用 pip 安装和管理包,以隔离项目的依赖关系。
  3. virtualenv:

    • 作用virtualenv 是一个独立的第三方虚拟环境管理工具,兼容 Python 2 和 Python 3。
    • 关系virtualenvpip 结合使用,用于创建独立的虚拟环境,然后使用虚拟环境中的 pip 来安装和管理包。
    • 注意:在 Python 3.3 及更高版本中,venv 已经取代了 virtualenv 的某些功能,因此在 Python 3 中,venv 是更常用的虚拟环境创建工具。
  4. conda:

    • 作用conda 是一个包管理器和环境管理器,通常与 Anaconda 或 Miniconda一起使用。它不仅能管理 Python 包,还可以管理其他语言的包。
    • 关系conda 具有自己的环境管理功能,允许创建和管理独立的环境,同时使用 conda 来安装和管理包。它不依赖于 Python 的 venvvirtualenv
    • 注意conda 的环境管理功能更强大,可以跨平台使用,适用于多种编程语言和科学计算任务。

总之,这些工具都有各自的特点和适用场景;pip 用于包管理,而 venvvirtualenvconda 用于创建和管理虚拟环境,以便在项目之间隔离依赖关系。

四、pip和conda有什么关系?

pipconda 都是用于包管理和依赖项管理的工具,是两种不同的包管理工具,都可以来安装、更新、卸载python包。

关系和区别:

  1. pip:

    • 作用pip 是 Python 的官方包管理器,用于安装、升级和卸载 Python 包。它主要用于管理 Python 包和库的安装,pip可以在任何环境中安装包(conda只能在conda环境中安装包);
    • 生态系统pip 只能管理Python 包(conda可以管理其他语言的包),这些包在 Python Package Index (PyPI) 上下载。
    • 虚拟环境pip 可以与 venvvirtualenv 或其他虚拟环境管理工具一起使用,以在项目之间隔离依赖关系。
  2. conda:

    • 作用conda 是一个独立的包管理器和环境管理器,最初是为科学计算和数据科学领域设计的。它可以用于管理 Python 包,也可以管理其他编程语言的包。
    • 生态系统conda 使用自己的包管理系统,不仅限于 Python 包,还支持多种其他语言的包。它有自己的软件源(Anaconda仓库)。
    • 虚拟环境conda 具有强大的环境管理功能,允许创建独立的环境,并在其中安装不同版本的 Python 和其他软件包。它可以隔离项目的依赖关系,并且可以跨平台使用。

 pip在安装包时不会检查依赖关系的兼容性,而conda会确保所有的包的依赖关系都满足;pip没有内置的虚拟环境管理功能,而conda可以创建和切换不同的虚拟环境;所以pip主要是用于管理包,而conda主要是用于管理虚拟环境;(pip 可以用于下载和安装包到 conda 创建的环境中,尤其是当某些包不在 conda 的默认仓库中时。)

 使用场景:

1、如果您主要关注 Python 包,并且只需要管理 Python 依赖项,那么 pip 可能足够满足您的需求。您可以结合虚拟环境管理工具(如 venvvirtualenv)使用 pip 来隔离项目的依赖关系。

2、如果您需要管理多个编程语言的包,或者需要更高级的环境管理功能,比如跨平台兼容性,那么 conda 可能更适合您。conda 的环境管理功能更强大,可以用于构建复杂的工作环境。

五、python中常说的包、模块和库是什么? 

1、模块(Module)

  • 一个 Python 模块是一个包含 Python 代码的单个文件,通常以 .py 为扩展名。
  • 模块包含变量、函数和类等代码定义,以便在其他 Python 程序中重复使用,可避免命名空间的冲突;
  • 使用 import 语句可以在其他 Python 文件中引入模块,从而可以访问其中定义的内容。

例如,如果有一个名为 my_module.py 的文件,其中包含一个函数 my_function,可以在其他文件中这样使用:

 import my_module

result = my_module.my_function()

2、库(Library)

  • 在 Python 中,库通常用于指代包含多个模块和功能的代码集合。库通常用于解决特定领域或任务的问题,并提供了一组相关的工具和函数。
  • Python 标准库是 Python 安装的一部分,包含了大量常用的模块和功能,可供开发人员使用,例如 mathosdatetime 等。
  • 此外,还有许多第三方库(如 NumPy、Pandas、Matplotlib 等)可供开发人员使用,用于各种任务,如数据分析、数据可视化、Web 开发等。

例如,NumPy 是一个用于数值计算的常用第三方库,它包含了许多数学和科学计算的函数和工具,可以通过 import 语句引入并使用:

 import numpy as np

array = np.array([1, 2, 3, 4, 5])

3、包(Package)

  • 包是一种用于组织模块的方式,它是一个包含多个模块的目录,通常包含一个特殊的 __init__.py 文件以标识它为一个包。
  • 包允许将相关的模块组织在一起,以便更好地管理和组织代码。
  • 包可以嵌套,即一个包内部可以包含子包和模块,从而形成一个层次结构。

例如,假设有一个名为 my_package 的包,它包含两个模块 module1.pymodule2.py。可以这样组织它们:

 my_package/

├── __init__.py

├── module1.py

└── module2.py

 可以使用 import 语句引入包中的模块,例如:

from my_package import module1

总之,模块是 Python 中的单个代码文件,包是多个模块的集合,库是多个包和模块的集合。

六、 搭建计算机视觉的深度学习环境都需要下载哪些东西?

  1. Python:深度学习在 Python 环境中广泛使用,因此需要安装 Python。推荐安装 Python 3.x 版本,因为 Python 2.x 已经不再维护。

  2. 深度学习框架:选择一个或多个深度学习框架,例如 TensorFlow、PyTorch、Keras 或 MXNet。可以使用pip或conda安装这些框架,例如:

    • 使用pip安装TensorFlow:pip install tensorflow
    • 使用pip安装PyTorch:pip install torch
    • 使用pip安装Keras:pip install keras
  3. GPU驱动和CUDA(可选):如果计划在GPU上训练深度学习模型,需要安装适当的GPU驱动和CUDA工具包。可以让深度学习框架利用GPU来加速训练。

  4. cuDNN库(可选):cuDNN(CUDA Deep Neural Network library)是用于深度学习的GPU加速库。许多深度学习框架(如TensorFlow和PyTorch)依赖于cuDNN来提高性能。可以根据框架的要求下载并安装cuDNN。

  5. 虚拟环境(可选):为了更好地管理项目和依赖项,建议在Python环境中创建虚拟环境。可以使用venv、virtualenv、conda等工具来创建虚拟环境。

  6. 其他Python库:计算机视觉项目通常需要其他Python库,如NumPy(用于数值计算)、OpenCV(用于计算机视觉任务)、Pillow(用于图像处理)、Matplotlib(用于数据可视化)等。可以使用pip或conda安装这些库,例如:

    • 使用pip安装NumPy:pip install numpy
    • 使用pip安装OpenCV:pip install opencv-python
    • 使用pip安装Pillow:pip install pillow
    • 使用pip安装Matplotlib:pip install matplotlib
  7. Jupyter Notebook(可选):Jupyter Notebook是一个交互式的开发环境,可用于进行实验、可视化和文档编写。它在深度学习项目中非常有用。可以使用pip或conda安装Jupyter Notebook,例如:

    • 使用pip安装Jupyter Notebook:pip install jupyter
  8. 集成开发环境(IDE,可选):可以选择使用一个Python IDE,如PyCharm、Visual Studio Code等。(cuDNN是CUDA的一个库)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值