http://blog.csdn.net/baimafujinji/article/details/51167852
Hessian矩阵与多元函数极值
海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵。尽管它是一个具有悠久历史的数学成果,但是在机器学习和图像处理(例如SIFT和SURF特征检测)中,我们也常常遇到它。所以本文就来向读者道一道Hessian Matrix的来龙去脉。本文的主要内容包括:
- 多元函数极值问题
- 泰勒展开式与Hessian矩阵
多元函数极值问题
回想一下我们是如何处理一元函数求极值问题的。例如, f(x)=x2 ,我们会先求一阶导数,即 f′(x)=2x ,根据费马定理极值点处的一阶导数一定等于 0 。但这仅是一个必要条件,而非充分条件。对于 f(x)=x2 来说,函数的确在一阶导数为零的点取得了极值,但是对于 f(x)=x3 来说,显然只检查一阶导数是不足以下定论的。
这时我们需要再求一次导,如果二阶导数 f′′<0 ,那么说明函数在该点取得局部极大值;如果二阶导数 f′′>0 ,则说明函数在该点取得局部极小值;如果 f′′=0 ,则结果仍然是不确定的,我们就不得不再通过其他方式来确定函数的极值性。
如果要在多元函数中求极值点,方法与此类似。作为一个示例,不妨用一个三元函数
f=f(x,y,z)
来作为示例。首先要对函数中的每个变量分别求偏导数,这会告诉我们该函数的极值点可能出现在哪里。即
接下来,要继续求二阶导数,此时包含混合偏导数的情况一共有 9 个,如果用矩阵形式来表示的话就得到
这个矩阵就称为Hessian矩阵。当然上面所给出的仅仅是一个三阶的Hessian矩阵。稍作扩展,我们可以对一个在定义域内二阶连续可导的实值多元函数
f(x1,x2,⋯,xn)
定义其Hessian矩阵
H
如下
当一元函数的二阶导数等于
0
时,我们并不能确定函数在该点的极值性。类似地,面对Hessian矩阵,仍然存在无法断定多元函数极值性的的情况,即当Hessian矩阵的行列式为
0
时,我们无法确定函数是否能取得极值。甚至我们可能会得到一个鞍点,也就是一个既非极大值也非极小值的的点。
基于Hessian矩阵,就可以判断多元函数的极值情况了,结论如下
- 如果是正定矩阵,则临界点处是一个局部极小值
- 如果是负定矩阵,则临界点处是一个局部极大值
- 如果是不定矩阵,则临界点处不是极值
如何判断一个矩阵是否是正定的,负定的,还是不定的呢?一个最常用的方法就是顺序主子式。实对称矩阵为正定矩阵的充要条件是的各顺序主子式都大于零。当然这个判定方法的计算量比较大。对于实二次型矩阵还有一个判定方法:实二次型矩阵为正定二次型的充要条件是的矩阵的特征值全大于零。为负定二次型的充要条件是的矩阵的特征值全小于零,否则是不定的。
如果你对二次型的概念仍然不很熟悉,这里也稍作补充。定义含有
n
个变量
x1,x2,⋯,xn
的二次齐次函数
为二次型。取 aij=aji ,则 2aijxixj+ajixjxi ,于是上式可以写成
更进一步,如果用矩阵对上式进行改写,则有
记
则二次型可记作 f=xTAx ,其中 A 为对称阵。
设有二次型 f=xTAx ,如果对任何 x≠0 ,都有 f>0 ,则称 f 为正定二次型,并称对称矩阵 A 是正定的;如果对任何 x≠0 ,都有 f<0 ,则称 f 为负定二次型,并称对称矩阵 A 是负定的。
正定矩阵一定是非奇异的。对阵矩阵 A 为正定的充分必要条件是: A 的特征值全为正。由此还可得到下面这个推论:对阵矩阵 A 为正定的充分必要条件是 A 的各阶主子式都为正。如果将正定矩阵的条件由 xTAx>0 弱化为 xTAx≥0 ,则称对称矩阵 A 是半正定的。
泰勒展开式与Hessian矩阵
主页君已经在之前的《图像处理中的数学原理详解》系列文章中介绍过泰勒展开式了。但那个时候我们给出的是一元函数的泰勒公式,不妨先来复习一下。
设一元函数
f(x)
在包含点
x0
的开区间
(a,b)
内具有
n+1
阶导数,则当
x∈(a,b)
时,有
其中
并且, ξ 在 x 和 x0 之间,这被称作是拉格朗日余项。上式被称为 f(x) 的 n 阶泰勒公式。在不需要余项的精确表达式时, Rn(x) 可以记作 o[(x−x0)n] ,这被称为是皮亚诺余项。
现在我们把上面这个结论稍微做一下推广,从而给出二元函数的泰勒公式。设二元函数
z=f(x,y)
在点
(x0,y0)
的某一邻域内连续且有直到
n+1
阶的连续偏导数,则有
其中, 0<θ<1 ,记号
表示
记号
表示
一般地,记号
表示
当然,我们可以用一种更加简洁的形式来重写上面的和式,则有
当余项 Rn(x,y) 采用上面这种形式时称为拉格朗日余项,如果采用皮亚诺余项,则二元函数的泰勒公式可以写成
特别低,对于一个多维向量 X , 以及在点 X0 的邻域内有连续二阶偏导数的多元函数 f(X) ,可以写出该函数在点 X0 处的(二阶)泰勒展开式
其中, o(∥X−X0∥2) 是高阶无穷小表示的皮亚诺余项。而 ∇2f(X0) 显然就是一个Hessian矩阵。所以上述式子也可以写成
我们已经知道对于
n
元函数
u=f(x1,x2,⋯,xn)
在点
M
处有极值,则有
也就是说这是一个必要条件,而充分条件则由上一节中之结论给出 。