Hessian matrix与极值点的一点思考

  1. Hessian矩阵正定和极值点的关系

同济版《高等数学》下册对二元函数极值点的判定法则:

A C − B 2 > 0 ,其中 A = f x x ( 2 ) , C = f y y ( 2 ) , B = f x y ( 2 ) AC - B^2 >0,其中A=f^{(2)}_{xx},C =f^{(2)}_{yy},B = f^{(2)}_{xy} ACB2>0,其中A=fxx(2),C=fyy(2),B=fxy(2)

此处的二元函数可以看做二维向量。

而在机器学习中,对于极值点的描述是:hessian矩阵正定(或者非负定矩阵或者半正定)。这两者有何关系?

要证明这个结论,首先要明确一点,hessian矩阵是对称矩阵,对称矩阵 Q Q Q必然可以对角化为

P T Λ P P^T\Lambda P PTΛP,假若关于样本值的二阶导数矩阵为:

A T Q A = A T ( P T Λ P ) A = ( A P ) T Λ ( P A ) A^TQA = A^T(P^T\Lambda P)A = (AP)^T\Lambda (PA) ATQA=AT(PTΛP)A=(AP)TΛ(PA),而对称矩阵的特征向量正交,即:
P i T P j = 0 , i ! = j P i T P j = 1 , i = = j P_{i}^{T} P_{j} = 0, i != j\\ P_{i}^{T} P_{j} = 1, i == j PiTPj=0,i!=jPiTPj=1,i==j
因此,若 Λ \Lambda Λ 正定,则二次型的值必然大于0,结论得证。

通俗的理解:因为hessian矩阵的特征值可以看做梯度的反方向,若矩阵的特征值符号不同,说明元素的梯度方向不同,有些元素的导数为正,有些元素的导数为负数。此时,多元函数有可能处于鞍点,当前点肯定不是多元函数的极值点。

而《高等数学》的条件中,可以推出如下结论: B 2 > 0 , A 与 C 同号,即 2 者导数方向相同 B^2 > 0, A与C同号,即2者导数方向相同 B2>0,AC同号,即2者导数方向相同。若此时两个元素的导数都大于0,那么此时梯度方向为负数,当前是极大值;若两个元素的导数都小于0,此时梯度下降方向为正值,当前点为极小值。

考虑求如下hessian矩阵的特征值:

{ A B B C } x = λ x \begin {Bmatrix} A & B \\ B&C \end {Bmatrix}x = \lambda x {ABBC}x=λx
∣ A − λ B B C − λ ∣ = 0 \begin {vmatrix} A - \lambda & B \\ B&C - \lambda \end {vmatrix} = 0 AλBBCλ =0

λ 2 − ( A + C ) λ + A C − B 2 = 0 \lambda ^ 2 - (A+C)\lambda + AC - B^2 = 0 λ2(A+C)λ+ACB2=0

λ = ( A + C ) + − ( A + C ) 2 − 4 A C + B 2 2 = ( A + C ) + − ( A − C ) 2 + B 2 2 \lambda = \frac {(A+C) +- \sqrt{(A+C)^2 - 4AC + B^2}}{2} = \\ \frac {(A+C) +- \sqrt{(A-C)^2 + B^2}}{2} λ=2(A+C)+(A+C)24AC+B2 =2(A+C)+(AC)2+B2

此时一定有:
( A + C ) ≥ ( A − C ) 2 + B 2 {(A+C) \ge \sqrt{(A-C)^2 + B^2}} (A+C)(AC)2+B2

通过《高等数学》的结论 A C > B 2 AC > B^2 AC>B2一定可以推出其矩阵的特征值大于0。

  1. hessian矩阵的特征值和梯度下降
    h e s s i a n 矩阵特征值的 绝对值 最大的为梯度下降最快的方向 \color{red}hessian矩阵特征值的\color{green}绝对值\color{red}最大的为梯度下降最快的方向 hessian矩阵特征值的绝对值最大的为梯度下降最快的方向
    这个论述是显而易见,训练数据可以看做向量,各个元素的比重相同,因此,一个向量中梯度最大的元素作为整个向量的梯度下降方向是合适的。
<think>嗯,用户想了解如何使用Hessian矩阵法提取激光条纹的中心点。首先,我得回忆一下Hessian矩阵在图像处理中的应用。Hessian矩阵通常用于分析图像的二阶导数,帮助检测结构的方向,比如边缘或者光条的法线方向。根据之前看到的引用,Steger算法就是基于Hessian矩阵的,对吧? 首先,Hessian矩阵的结构是怎样的呢?对于图像中的每个点(x,y),Hessian矩阵由二阶偏导数组成,包括rxx、rxy和ryy。这个矩阵可以帮助确定光条的法线方向,这是找到中心点的关键。接下来,法线方向上的泰勒展开用来精确定位亚像素位置。用户可能需要具体的步骤,比如如何计算Hessian矩阵,如何求法线方向,以及泰勒展开的具体应用。 然后,预处理步骤也很重要。引用中提到使用Canny算子找边缘,求极值确定ROI,再用高斯滤波。这些步骤可能影响最终结果的准确性,所以需要详细说明。另外,Hessian矩阵计算后,如何求解特征值和特征向量来确定法线方向呢?可能需要解释特征向量对应的方向是法线方向,而最大的特征值对应的方向是条纹的切线方向。 在泰勒展开部分,如何利用一阶和二阶导数来逼近极值点?这里可能需要数学公式,比如在法线方向上进行泰勒展开,解方程得到亚像素的偏移量。然后根据极值的条件判断是否为中心点。这部分可能需要更详细的推导,但用户可能需要的是实现步骤而不是数学证明。 实现过程中,可能涉及图像处理库的使用,比如OpenCV中的滤波和边缘检测函数。Hessian矩阵的计算可能需要手动实现,或者利用现有的函数。高斯滤波的参数设置,比如标准差的选择,可能影响结果,需要提及。另外,光条中心的连接和后处理,比如平滑处理,也是关键步骤,确保中心线的连续性。 用户可能还会关心算法的优缺点,比如Steger算法的高精度但速度慢的问题,是否有优化的方法。引用中提到的优化方法,比如ROI区域确定和高斯滤波,可以提升效率和准确性。实验结果表明该方法在不同环境下表现良好,这可能也是用户需要的信息。 最后,是否需要给出具体的代码示例?比如用Python和OpenCV实现Hessian矩阵的计算和中心点提取。或者至少提供实现的步骤和关键代码片段,帮助用户理解如何实际操作。 总结一下,回答的结构应该是:先介绍原理,然后分步骤详细说明预处理、Hessian矩阵计算、法线方向确定、泰勒展开亚像素定位,以及后处理。最后可能给出实现的关键点和应用场景,以及相关的问题。</think>### 使用Hessian矩阵法提取激光条纹中心点的方法 #### 1. 原理概述 Hessian矩阵法(如Steger算法)通过分析图像的二阶导数信息,定位激光条纹中心的亚像素坐标。其核心假设是**光条亮度沿法线方向呈高斯分布**,中心点对应亮度极值[^4]。Hessian矩阵描述了局部灰度变化特征,通过其特征向量确定光条法线方向,再沿此方向进行泰勒展开,求解极值点位置[^2]。 #### 2. 实现步骤 ##### (1) 图像预处理 - **高斯滤波**:使用高斯核(如$k=5$, $\sigma=1.5$)平滑图像,抑制噪声 $$G(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$$ - **ROI提取**:通过Canny边缘检测或亮度阈值法确定光条大致区域,减少计算量[^3] ##### (2) 计算Hessian矩阵 对于图像$I(x,y)$,计算每个像素点的二阶偏导数: $$ H(x,y) = \begin{bmatrix} r_{xx} & r_{xy} \\ r_{xy} & r_{yy} \end{bmatrix} $$ 其中: - $r_{xx} = \frac{\partial^2 I}{\partial x^2}$ - $r_{yy} = \frac{\partial^2 I}{\partial y^2}$ - $r_{xy} = \frac{\partial^2 I}{\partial x \partial y}$ ##### (3) 确定法线方向 求解Hessian矩阵的特征值$\lambda_1, \lambda_2$和对应的特征向量$\vec{v_1}, \vec{v_2}$。其中: - **最大特征值对应的特征向量**为光条切线方向 - **最小特征值对应的特征向量**为法线方向[^2] ##### (4) 亚像素定位 沿法线方向$\vec{n}=(n_x,n_y)$进行泰勒展开: $$ I(\mathbf{p}+\varepsilon \vec{n}) \approx I(\mathbf{p}) + \varepsilon \vec{n}^T \nabla I + \frac{1}{2}\varepsilon^2 \vec{n}^T H \vec{n} $$ 令导数为零,解得偏移量: $$ \varepsilon = -\frac{\vec{n}^T \nabla I}{\vec{n}^T H \vec{n}} $$ 当$|\varepsilon| \leq 0.5$时,中心点坐标为: $$ (x_c, y_c) = (x,y) + \varepsilon (n_x, n_y) $$ #### 3. 实现示例(Python伪代码) ```python import cv2 import numpy as np def steger_center(img): # 预处理 img_blur = cv2.GaussianBlur(img, (5,5), 1.5) # 计算梯度 dx = cv2.Sobel(img_blur, cv2.CV_64F, 1, 0, ksize=3) dy = cv2.Sobel(img_blur, cv2.CV_64F, 0, 1, ksize=3) dxx = cv2.Sobel(dx, cv2.CV_64F, 1, 0, ksize=3) dxy = cv2.Sobel(dx, cv2.CV_64F, 0, 1, ksize=3) dyy = cv2.Sobel(dy, cv2.CV_64F, 0, 1, ksize=3) centers = [] for y in range(img.shape[0]): for x in range(img.shape[1]): # 构建Hessian矩阵 H = np.array([[dxx[y,x], dxy[y,x]], [dxy[y,x], dyy[y,x]]]) # 计算特征值和特征向量 eigenvalues, eigenvectors = np.linalg.eigh(H) n = eigenvectors[:,0] # 法线方向 # 计算偏移量 gradient = np.array([dx[y,x], dy[y,x]]) numerator = n.dot(gradient) denominator = n.dot(H).dot(n) if denominator != 0: epsilon = -numerator / denominator if abs(epsilon) <= 0.5: xc = x + epsilon * n[0] yc = y + epsilon * n[1] centers.append((xc, yc)) return centers ``` #### 4. 优化方向 - **计算加速**:使用GPU并行计算或限制ROI区域 - **精度提升**:采用更高阶的泰勒展开或自适应高斯核 - **抗干扰**:结合形态学操作去除噪声点 实验表明,该方法在不同背景下的中心定位均方根误差可小于0.4像素[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值