平面极坐标系下质点的运动方程

一、平面极坐标系定义

1. 定义

在参考系上取一点 O O O 称为极点,由 O O O 点引一有刻度的射线,称之为极轴,即构成极坐标系。

2. 极坐标系

质点的位置 P P P 由极径 ρ \rho ρ 和幅角 θ \theta θ 给出。如下图所示。
图1 平面极坐标系示意图
ρ \rho ρ :极径,极点到质点的距离
θ \theta θ:幅角或极角,极径与极轴的夹角,规定角度取逆时针方向为正

3. 正交单位矢量

  • 径向单位矢量 i \bm{i} i :方向从极点指向质点。则矢径 r = ρ i \bm{r} = \rho \bm{i} r=ρi
  • 横向单位矢量 j \bm{j} j :方向与径向单位矢量垂直,且指向 θ \theta θ 增加的方向。

4. 正交单位矢量对时间 t 的导数的计算

设初始时刻质点位置为 P 1 P_{1} P1,经过时间 d t dt dt,质点位置为 P 2 P_{2} P2,幅角变化量为 d θ d\theta dθ。如下图所示。
图2 正交单位矢量求导示意图

4.1 径向单位矢量 i \bm{i} i

经过时间 d t dt dt,径向单位矢量由 i 1 \bm{i}_{1} i1变化到 i 2 \bm{i}_{2} i2,转过的角度为 d θ d\theta dθ
d i = i 2 − i 1 d\bm{i}=\bm{i}_{2}-\bm{i}_{1} di=i2i1

由于 i \bm{i} i为单位矢量,且 d t dt dt为趋于 0 0 0的微元。所以 d i d\bm{i} di的大小即为以 ∣ i ∣ |\bm{i}| i为半径,角度为 d θ d\theta dθ所对应的弧长(单位矢量 i \bm{i} i i 1 \bm{i}_{1} i1旋转到 i 2 \bm{i}_{2} i2时,箭头末端所经过的路程),其大小为:
∣ d i ∣ = ∣ i ∣ ⋅ d θ = d θ |d\bm{i}|=|\bm{i}|\cdot d\theta=d\theta di=idθ=dθ

d i d\bm{i} di的方向为从 i 1 \bm{i}_{1} i1的末端指向 i 2 \bm{i}_{2} i2的末端,当 d t dt dt趋于 0 0 0时, d i d\bm{i} di的方向垂直于 i \bm{i} i并且指向 θ \theta θ的增加方向,所以 d i d\bm{i}

  • 11
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值