Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training

摘要

在本文中,我们提出了一种基于迭代自训练(self-training)过程的新型UDA框架.该问题被形式化为潜在变量损失最小化,并且可以通过生成目标数据的伪标签和通着这些伪标签再训练来解决这些问题。在ST之上,我们还提出了一种新颖的类平衡自训练(CBST)框架,以避免大类在伪标签生成上的逐渐优势,并引入空间先验来细化生成的标签。综合实验表明,所提出的方法在多个主要UDA设置下实现了最先进的语义分割性能。

总结

  1. 每次生成置信度最高的伪标签,以保证最终迭代出正确的标签

  2. 空间先验信息——像素 n n n是类别 c c c的频率。用以辅助目标域的训练,减少错误

Loss 函数

min ⁡ w , y ^ L S , P ( w , y ^ ) = − ∑ s = 1 S ∑ n = 1 N y s , n T log ⁡ ( p n ( w , I s ) ) − ∑ t = 1 T ∑ n = 1 N ∑ c = 1 C [ y ^ t , n ( c ) log ⁡ ( q n ( c ) p n ( c ∣ w , I t ) ) + k c y ^ t , n ( c ) ] \min_{\mathbf{w},\hat{\mathbf{y}}}\mathcal{L}_{S,P}(\mathbf{w},\hat{\mathbf{y}})=- \sum_{s=1}^S \sum_{n=1}^N \mathbf{y} ^T_{s,n} \log(\mathbf{p}_n(\mathbf{w},\mathbf{I}_s)) -\sum_{t=1}^T\sum_{n=1}^N \sum_{c=1}^C [\hat{y}_{t,n}^{(c)} \log( q_n(c) p_n(c|\mathbf{w},\mathbf{I}_t) )+k_c\hat{y}_{t,n}^{(c)}] w,y^minLS,P(w,y^)=s=1Sn=1Nys,nTlog(pn(w,Is))t=1Tn=1Nc=1C[y^t,n(c)log(qn(c)pn(cw,It))+kcy^t,n(c)]
s . t .    y ^ t , n = [ y ^ t , n ( 1 ) , ⋯   , y ^ t , n ( C ) ] ∈ { { e ∣ e ∈ R C } ∪ 0 } ,    ∀ t , n    ; k c > 0 , ∀ c s.t. \; \hat{\mathbf{y}}_{t,n}=[\hat{y}_{t,n}^{(1)},\cdots,\hat{y}_{t,n}^{(C)}] \in \{ \{ \mathbf{e}|\mathbf{e}\in \mathbb{R}^C \} \cup \mathbf{0} \} , \; \forall t,n \; ; k_c>0,\forall c s.t.y^t,n=[y^t,n(1),,y^t,n(C)]{{eeRC}0},t,n;kc>0,c

  • 第一项:使源域分类尽可能正确
    1. I s \mathbf{I}_s Is是源域中第 s s s个图片.
    2. y s , n \mathbf{y} _{s,n} ys,n 是一个 N × 1 N \times 1 N×1的向量,表示图片 I s \mathbf{I}_s Is中第 n n n个像素的ground truth,每张图有 N N N个像素.
    3. w \mathbf{w} w是网络权重.
    4. log ⁡ ( p n ( w , I s ) ) \log(\mathbf{p}_n(\mathbf{w},\mathbf{I}_s)) log(pn(w,Is)) 表示像素 n n n 的类别概率.
  • 第二项
    1. y ^ t , n \hat{\mathbf{y}}_{t,n} y^t,n 是目标域的伪标签.每次选择置信度最高的,最优可能正确的标签作为伪标签.当 y ^ t , n = 0 \hat{\mathbf{y}}_{t,n}=0 y^t,n=0时,忽略这个伪标签在模型训练中的作用.
    2. y ^ t , n ( c ) \hat{y}_{t,n}^{(c)} y^t,n(c):该像素是第 c c c类的概率值 .
    3. k c k_c kc:过滤掉概率值小于 e − k c e^{-k_c} ekc的伪标签.对每一类 k c k_c kc值选取方法如下:

在这里插入图片描述
在这里插入图片描述

  1. q n ( c ) q_n(c) qn(c):像素 n n n是类别 c c c的频率。此为空间先验信息,并限制为 ∑ i = 1 N q n ( c ) = 1 \sum_{i=1}^N q_n(c)=1 i=1Nqn(c)=1
    下图显示了空间先验信息的热度图,计算自GTA5数据集。黄色代表高能量,蓝色代表低能量。
  2. q n ( c ) p n ( c ∣ w , I t ) q_n(c) p_n(c|\mathbf{w},\mathbf{I}_t) qn(c)pn(cw,It) :在网络参数为 w \mathbf{w} w,图片是 I t \mathbf{I}_t It的条件下类别为 c c c的概率是 p n ( c ∣ w , I t ) p_n(c|\mathbf{w},\mathbf{I}_t) pn(cw,It). 乘以类别 c c c在像素 n n n的频率是加入先验信息。举个例子,对于图像左下角的像素,观察其热度图,我们知道类别为road的频率最大,sidewalk的频率小。如果给定一张图片左下角是road,但是伪标签 y ^ t , n ( c = r o a d ) \hat{y}_{t,n}^{(c=road)} y^t,n(c=road)的值很小,即不是road类。

举个例子,对于图像左下角的像素,观察其热度图,我们知道类别为road的频率最大,sidewalk的频率小。如果给定一张图片左下角是road,但是伪标签 y ^ t , n ( c = r o a d ) \hat{y}_{t,n}^{(c=road)} y^t,n(c=road)的值很小,即不是road类。那么 q n ( c ) p n ( c ∣ w , I t ) q_n(c) p_n(c|\mathbf{w},\mathbf{I}_t) qn(c)pn(cw,It)的值接近0,即 − y ^ t , n ( c ) log ⁡ ( q n ( c ) p n ( c ∣ w , I t ) ) -\hat{y}_{t,n}^{(c)} \log( q_n(c) p_n(c|\mathbf{w},\mathbf{I}_t) ) y^t,n(c)log(qn(c)pn(cw,It))会很大。当我们最小化Loss函数时,就能利用先验信息修正这个错误。

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
无监督适应(Unsupervised Domain Adaptation)是指在目标没有标注数据的情况下,利用源和目标的数据进行模型的训练,从而提高目标上的预测性能。在这种情况下,源和目标可能存在一些不同,比如分布不同、标签不同等等,这些差异会影响模型在目标上的泛化能力。因此,无监督适应的目标是通过训练模型来减少源和目标之间的差异,从而提高模型在目标上的性能。无监督适应在计算机视觉等领有着广泛的应用。 我非常有兴趣了解更多关于无监督领适应的信息。 无监督适应是一种机器学习技术,旨在解决源和目标之间的分布差异问题,从而提高在目标上的泛化能力。下面我将进一步介绍无监督适应的概念、方法和应用。 1. 无监督适应的概念 在无监督适应中,我们假设源和目标之间存在着一些潜在的相似性或共性,即源和目标之间的差异可以通过某种方式进行减少或消除。这种相似性或共性可以通过学习一个适应模型来实现,该模型可以在源上训练,并且可以通过无监督的方式进行目标的训练。适应模型通常采用深度神经网络等模型结构,通过最小化源和目标之间的距离或差异来学习适应模型。 2. 无监督适应的方法 目前,无监督适应有很多方法,其中最常用的方法包括: (1) 最大均值差异(Maximum Mean Discrepancy,MMD)方法:该方法通过最小化源和目标之间的分布差异,从而学习一个适应模型。 (2) 对抗性适应(Adversarial Domain AdaptationADA)方法:该方法通过引入一个分类器来判断数据来自源还是目标,并通过最小化分类器的误差来学习一个适应模型。 (3) 自监督适应Self-supervised Domain Adaptation,SSDA)方法:该方法通过利用目标中的无标注数据,自动学习一个任务,然后通过该任务来学习一个适应模型。 3. 无监督适应的应用 无监督适应在计算机视觉等领有着广泛的应用。例如,在目标检测、图像分类、图像分割、人脸识别等任务中,无监督适应都可以用来提高模型的性能。另外,无监督适应还可以用来解决跨语种、跨领的自然语言处理问题,例如机器翻译、文本分类等任务。 希望这些信息可以帮助你更好地了解无监督适应。非常感谢您提供的详细信息!这些信息对于我更好地理解无监督适应非常有帮助。我想请问一下,对于不同的无监督适应方法,它们的性能和适用场景有什么区别呢?无监督适应(unsupervised domain adaptation)指的是一种机器学习领中的技术,它通过在不需要标记数据的情况下,将一个领(source domain)的知识迁移到另一个领(target domain)中。这种技术通常被用于解决在不同的领之间存在分布差异(domain shift)时,如何训练出泛化能力强的模型的问题。在无监督适应中,模型只使用源领中的标记数据进行训练,然后通过一些转换方法来将模型适应到目标领中。这种技术的应用范围非常广泛,如自然语言处理、计算机视觉等领。 我可以提供无监督的领适应,以更好地理解和处理不同领的数据。无监督领适应(Unsupervised Domain Adaptation)指的是在没有目标(target domain)标签的情况下,利用源(source domain)标签和目标的无标签数据来提高目标上的泛化性能。在这种情况下,我们通常假设源和目标具有相同的特征空间和相似的分布,但是它们之间的边缘分布可能会有所不同。因此,无监督领适应的目标是通过学习一个映射函数,将源和目标之间的边缘分布对齐,从而提高目标上的性能。无监督领适应(Unsupervised Domain Adaptation)指的是在源(source domain)有标注数据但目标(target domain)没有标注数据的情况下,将源的知识迁移到目标中,使得在目标上的模型表现也能够得到提升的技术。在无监督领适应中,通常使用一些特殊的算法或者网络结构,使得模型能够自适应目标的数据分布,从而达到更好的泛化性能。 我们正在研究无监督领适应,以改善机器学习系统的性能。无监督领适应(unsupervised domain adaptation)是指在目标领没有标签数据的情况下,利用源领的标签数据和目标领的无标签数据,训练一个适应目标领的模型的技术。该技术通常应用于机器学习和计算机视觉等领中,用于解决在源领训练出的模型不能直接应用到目标领的问题。无监督领适应技术可以提高模型在目标领的性能,同时也可以减少目标领标注数据的需求。无监督领适应是指将一个模型从一个领(source domain)迁移到另一个领(target domain),而不需要在目标领中使用标记的数据。这意味着,在目标领中没有关于标签或类别的先验知识,只有一些未标记的样本可供使用。因此,无监督领适应是一种半监督学习方法,它使用标记数据从一个领到另一个领的知识转移来提高模型在目标领中的性能。无监督领适应在实际应用中具有广泛的应用,例如在自然语言处理、计算机视觉和语音识别等领。无监督适应(unsupervised domain adaptation)是指在源和目标数据分布不同的情况下,利用无标签的目标数据来提升目标上的学习性能的一种机器学习方法。在无监督适应中,通常假设源和目标具有相同的标签空间,但是它们的数据分布不同,因此需要通过特征对齐或领适应的方法来缓解这种分布偏移问题。无监督适应被广泛应用于计算机视觉、自然语言处理等领,是解决实际应用中数据分布不匹配问题的有效手段之一。无监督领适应(Unsupervised Domain Adaptation)是一种机器学习中的技术,旨在将在一个领中学习到的知识迁移到另一个不同领的情况下进行分类或回归。在无监督领适应中,目标领没有标注的标签信息,因此需要使用源领和目标领的无标签数据进行训练,以使得模型可以更好地适应目标领的数据。无监督领适应通常被应用于计算机视觉领,例如将在城市场景下训练的模型应用于乡村场景。 我们可以使用无监督领适应来解决这个问题,这是一种机器学习技术,它可以有效地将现有的模型应用于新的任务和新的领中。无监督领适应(Unsupervised Domain Adaptation)是指在目标没有标签信息的情况下,利用源的有标签数据和目标的无标签数据进行模型训练的技术。其主要目的是将源的知识迁移到目标中,从而提高目标的分类或回归性能。无监督领适应在自然语言处理、计算机视觉等领有广泛的应用。无监督适应(unsupervised domain adaptation)是指在源有标注数据但目标没有标注数据的情况下,利用源数据自适应地改进目标的学习效果。其目的是通过迁移学习,使得在源上训练好的模型能够适应目标上的数据,从而提高目标上的性能表现。无监督适应是机器学习领中的一个重要研究方向,应用广泛,例如在计算机视觉、自然语言处理等领中都有应用。无监督适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,将一个领的数据适应到另一个领的任务上。它通常用于解决机器学习中的迁移学习问题,即将一个领中学习到的知识应用到另一个不同但相关的领中。在无监督适应中,模型需要从源中学习知识,并将其应用到目标中,从而提高目标上的性能。这种方法通常用于处理数据集标注不足或成本高昂的情况。无监督适应(Unsupervised Domain Adaptation)是指在目标没有标记数据的情况下,通过利用源和目标之间的相似性进行模型训练的一种机器学习技术。其目的是在不同的数据集上训练出具有相同或类似特征的模型,以适应不同的应用场景。无监督适应常用于计算机视觉、自然语言处理等领。无监督适应(Unsupervised Domain Adaptation)是指在目标没有标注数据的情况下,通过学习源数据和目标数据之间的差异,将源的知识迁移到目标的任务中。在无监督适应中,没有人为给出目标的标签信息,需要从目标数据中自动学习出特征并进行分类等任务。这种方法在现实应用中具有很大的实用性,可以有效地减少人工标注数据的成本和时间。无监督适应(Unsupervised Domain Adaptation)是指在目标和源数据分布不同的情况下,通过无需标注目标数据的方式,使得模型能够在目标上表现良好的技术。它通常应用于机器学习领中的迁移学习问题,通过将源的知识迁移到目标上,从而提高目标的学习效果。无监督适应(Unsupervised Domain Adaptation)是指在目标(target domain)没有标记数据的情况下,通过在源(source domain)和目标之间找到共同特征进行学习,使得源的知识可以迁移至目标的技术。其目的是为了提高目标的性能,使得目标的模型在未来的数据中表现更好。无监督适应迁移学习(Transfer Learning)的一个重要领,广泛应用于自然语言处理、计算机视觉等领适应是一种技术,它可以让机器学习模型在没有标注数据的情况下从一个领转移到另一个领。它使机器学习模型能够从一个偏差的领转移到另一个偏差的领,从而提高性能。无监督适应(Unsupervised Domain Adaptation)是指在目标(Target Domain)没有标注数据的情况下,将源(Source Domain)的知识迁移至目标,使得在目标上的模型性能得到提升的一种机器学习技术。这种技术通常用于解决训练数据不足或者不平衡的问题,能够帮助提高模型的泛化能力和适应性。无监督适应(Unsupervised Domain Adaptation)是指在目标数据没有标签的情况下,通过将源数据的知识迁移到目标,来提高目标的分类性能的一种机器学习技术。这种技术在实际应用中非常有用,因为在许多情况下,收集和标记目标数据都非常昂贵和困难,而源数据已经存在并且可以用来训练模型。无监督适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,通过将源和目标的数据进行转换和对齐,来提高目标上的学习效果。通常情况下,源和目标的数据分布不同,因此在目标上直接使用源的模型会导致性能下降。无监督适应可以通过学习源和目标之间的共享特征来解决这个问题,从而提高模型在目标上的泛化能力。无监督领适应(unsupervised domain adaptation)指的是在目标数据没有标签的情况下,通过学习源数据和目标数据的差异,将源的知识迁移到目标的任务中,以提高模型在目标的泛化能力。这是一种常见的迁移学习方法。无监督适应(Unsupervised Domain Adaptation)指的是在没有标注数据的情况下,将一个领(source domain)的知识迁移到另一个领(target domain)中,以提高模型的泛化性能。这种技术在许多机器学习应用中都非常有用,特别是在数据标注成本高、标注数据不足或者难以获取标注数据的情况下。无监督领适应(unsupervised domain adaptation)是指在没有目标领标签数据的情况下,将源领的知识迁移到目标领的过程。它通常用于解决在目标领缺乏标记数据的情况下,如何使用源领的标记数据来提高模型性能的问题。无监督领适应技术包括多个领适应方法,如深度对抗网络(DANN)、最大平均差异(MMD)和相关分量分析(CORAL)等。无监督领适应(Unsupervised Domain Adaptation)是指在目标领没有标注数据的情况下,通过利用源领和目标领的数据,使得模型在目标领上的泛化能力更强。这是一个重要的问题,因为在实际应用中,很难获得大量的标注数据。因此,无监督领适应是一种有效的方法,可以在没有标注数据的情况下提高模型的性能。无监督适应(Unsupervised Domain Adaptation)是指在源和目标数据分布不同的情况下,通过不借助目标的标签信息,仅利用源数据和一些无标签的目标数据,来提高目标的分类性能的一种机器学习技术。在实际应用中,由于很难获取到大量无监督领适应(Unsupervised Domain Adaptation)是一种机器学习方法,旨在将从一个领中收集的数据的知识应用到另一个领中,而不需要显式的标签或监督信息。其目的是在不同的领之间迁移学习知识,从而提高模型在目标领的性能。这种方法在处理从源领到目标领之间存在差异的情况下很有用,如语音识别、图像识别和自然语言处理等领。无监督适应(Unsupervised Domain Adaptation)是指在没有标注数据的情况下,将源和目标之间的差异最小化,使得在目标上的模型性能能够得到提升的一种机器学习技术。它主要应用于模型训练数据的标注成本较高或者标注数据不足的情况下,通过迁移源知识来提高模型在目标的泛化能力。 无监督适应的目标是找到一个能够将源和目标之间的分布差异最小化的特征变换函数,使得在目标上的模型性能能够得到提升。这个特征变换函数可以通过最小化源和目标之间的差异来学习得到。无监督适应算法通常包括特征提取和特征对齐两个步骤,其中特征对齐是核心步骤,通过最小化源和目标之间的分布差异,将两个的特征空间对齐。 无监督适应是一种重要的机器学习技术,在自然语言处理、计算机视觉、语音识别等领得到了广泛应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值