dataloader = DataLoader(
dataset, batch_size=batch_size, pin_memory=True, num_workers=workers,
shuffle=(sampler is None) and training, collate_fn=dataset.collate_batch,
drop_last=False, sampler=sampler, timeout=0
这段代码是在使用 PyTorch 的 DataLoader 来创建一个数据加载器,用于在训练或测试深度学习模型时批量加载数据。下面我将逐行解释这段代码中的参数和设置:
dataloader = DataLoader(: 创建一个新的 DataLoader 对象。
dataset,:
指定要加载的数据集对象。这个对象通常是一个继承自 torch.utils.data.Dataset 的类,并实现了 len 和 getitem 方法。
batch_size=batch_size,: 指定每个批次的数据量。在训练过程中,模型将按此大小批量处理数据。
pin_memory=True,:
如果设置为 True,数据将被加载到 CUDA 固定内存中,这可以加速数据从主机到 GPU 的传输。但请注意,这仅在使用 CUDA 的情况下才有意义。
num_workers=workers,: 指定用于数据加载的子进程数。设置为 0意味着数据将在主进程中加载(同步)。设置为更大的值可以使用多个子进程并行加载数据(异步),但这也可能增加内存使用。
shuffle=(sampler is None) and training,:
控制是否在每个 epoch 开始时打乱数据。这通常用于训练模式,因为打乱数据可以帮助模型更好地泛化。但是,如果指定了
sampler(例如,用于分布式训练或自定义的数据顺序),则不会打乱数据。 这里的逻辑是:如果没有指定 sampler 并且是在训练模式下,则打乱数据。
collate_fn=dataset.collate_batch,:
指定一个函数来合并样本列表到一个小批量中。默认情况下,PyTorch 提供了一个函数来将列表的样本和标签转换为张量并打包成批次。但在这里,用户可能定义了一个自定义的 collate_batch 方法,以适应特定的数据格式或需求。
drop_last=False,: 如果数据集的大小不能被 batch_size 整除,则最后一个批次可能会小于batch_size。将此参数设置为 True 将在每个 epoch 结束时丢弃这个较小的批次。设置为 False 将保留它。
sampler=sampler,:
指定一个自定义的采样器。这可以用于控制数据加载的顺序,例如,在分布式训练中或当你想要以特定的顺序加载数据时。
timeout=0: 这是一个用于数据加载的超时设置(以秒为单位)。如果设置为正数,则在从子进程中获取数据时,如果等待时间超过此值,则会引发异常。设置为 0 表示没有超时。
总的来说,这段代码创建了一个 DataLoader 对象,该对象可以根据指定的参数和设置高效地加载和批量处理数据。