连续信号的脉冲分解与卷积

单位阶跃信号
在这里插入图片描述
u ( t ) = { 0 t &lt; 0 1 t &gt; 0 u(t)=\left\{\begin{array}{ll}{0} &amp; {t&lt;0} \\ {1} &amp; {t&gt;0}\end{array}\right. u(t)={01t<0t>0

有延迟的单位阶跃信号(左加右减)
在这里插入图片描述
u ( t − t 0 ) = { 0 t &lt; t 0 1 t &gt; t 0 , t 0 &gt; 0 u\left(t-t_{0}\right)=\left\{\begin{array}{ll}{0} &amp; {t&lt;t_{0}} \\ {1} &amp; {t&gt;t_{0}}\end{array}, \quad t_{0}&gt;0\right. u(tt0)={01t<t0t>t0,t0>0
在这里插入图片描述
u ( t + t 0 ) = { 0 t &lt; − t 0 1 t &gt; − t 0 , t 0 &gt; 0 u\left(t+t_{0}\right)=\left\{\begin{array}{ll}{0} &amp; {t&lt;-t_{0}} \\ {1} &amp; {t&gt;-t_{0}}\end{array}, t_{0}&gt;0\right. u(t+t0)={01t<t0t>t0,t0>0
门函数:也称窗函数

f ( t ) = u ( t + τ 2 ) − u ( t − τ 2 ) f(t)=u\left(t+\frac{\tau}{2}\right)-u\left(t-\frac{\tau}{2}\right) f(t)=u(t+2τ)u(t2τ)
在这里插入图片描述
分解 f ( x ) f(x) f(x)
在这里插入图片描述当t= τ \tau τ,脉高: f ( τ ) f(\tau) f(τ),脉宽: Δ τ \boldsymbol{\Delta} \tau Δτ
存在区间: u ( t − τ ) − u ( t − τ − Δ τ ) \\u(t-\tau)-u(t-\tau-\Delta \tau) u(tτ)u(tτΔτ)
此窄脉冲可表示为: f ( τ ) [ u ( t − τ ) − u ( t − τ − Δ τ ) ] \\f(\tau)[u(t-\tau)-u(t-\tau-\Delta \tau)] f(τ)[u(tτ)u(tτΔτ)]
x = − ∞ x=-\infty x= ∞ \infty f ( t ) f(t) f(t)可表示为许多窄脉冲叠加

f ( t ) = ∑ τ = − ∞ ∞ f ( τ ) [ u ( t − τ ) − u ( t − τ − Δ τ ) ] = ∑ τ = − ∞ ∞ f ( τ ) [ u ( t − τ ) − u ( t − τ − Δ τ ) ] Δ τ ⋅ Δ τ \begin{aligned} f(t) &amp;=\sum_{\tau=-\infty}^{\infty} f(\tau)[u(t-\tau)-u(t-\tau-\Delta \tau)] \\ &amp;=\sum_{\tau=-\infty}^{\infty} f(\tau) \frac{[u(t-\tau)-u(t-\tau-\Delta \tau)]}{\Delta \tau} \cdot \Delta \tau \end{aligned} f(t)=τ=f(τ)[u(tτ)u(tτΔτ)]=τ=f(τ)Δτ[u(tτ)u(tτΔτ)]Δτ

Δ τ → 0 \Delta \tau \rightarrow 0 Δτ0

lim ⁡ Δ τ → 0 [ u ( t − τ ) − u ( t − τ − Δ τ ) ] Δ τ = d u ( t − τ ) d t = δ ( t − τ ) \lim _{\Delta \tau \rightarrow 0} \frac{[u(t-\tau)-u(t-\tau-\Delta \tau)]}{\Delta \tau}=\frac{\mathrm{d} u(t-\tau)}{\mathrm{d} t}=\delta(t-\tau) limΔτ0Δτ[u(tτ)u(tτΔτ)]=dtdu(tτ)=δ(tτ)

Δ τ → d τ , ∑ τ = − ∞ ∞ → ∫ τ = − ∞ ∞ \Delta \tau \rightarrow \mathbf{d} \tau, \quad \sum_{\tau=-\infty}^{\infty} \rightarrow \int_{\tau=-\infty}^{\infty} Δτdτ,τ=τ=

f ( t ) = ∫ − ∞ ∞ f ( τ ) δ ( t − τ ) d τ f(t)=\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d \tau f(t)=f(τ)δ(tτ)dτ

物理意义:

不同连续信号都可分解为冲激信号的叠加,信号不同表明它们的系数不同。

卷积
连续函数卷积的定义:(函数的脉冲分解定义一样么)
y ( t ) = ∫ − ∞ ∞ x 1 ( τ ) x 2 ( t − τ ) d τ y(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) \mathrm{d} \tau y(t)=x1(τ)x2(tτ)dτ

y ( t ) = x 1 ( t ) ∗ x 2 ( t ) y(t)=x_{1}(t) * x_{2}(t) y(t)=x1(t)x2(t)

性质:
(1)交换律
x 1 ( t ) ∗ x 2 ( t ) = x 2 ( t ) ∗ x 1 ( t ) x_{1}(t) * x_{2}(t)=x_{2}(t) * x_{1}(t) x1(t)x2(t)=x2(t)x1(t)
(2)分配律
x 1 ( t ) ∗ [ x 2 ( t ) + x 3 ( t ) ] = x 1 ( t ) ∗ x 2 ( t ) + x 1 ( t ) ∗ x 3 ( t ) x_{1}(t) *\left[x_{2}(t)+x_{3}(t)\right]=x_{1}(t) * x_{2}(t)+x_{1}(t) * x_{3}(t) x1(t)[x2(t)+x3(t)]=x1(t)x2(t)+x1(t)x3(t)
(3)任意函数与冲激函数的卷积等于函数自身
x ( t ) ∗ δ ( t ) = x ( t ) x(t) * \delta(t)=x(t) x(t)δ(t)=x(t)

可得到:
f ( t ) = f ( t ) ∗ δ ( t ) f(t)=f(t) * \delta(t) f(t)=f(t)δ(t)

最后发现,信号的分解其实就是,利用冲击函数 δ ( t ) \delta(t) δ(t)的抽样性,用冲击函数对信号进行卷积。

f ( t ) = ∫ − ∞ ∞ f ( τ ) δ ( t − τ ) d τ f(t)=\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) \mathrm{d} \tau f(t)=f(τ)δ(tτ)dτ

零状态响应:
f ( x ) f(x) f(x)通过 LTI 线性时不变系统,利用特性,叠加,延时。可求得信号 f ( x ) f(x) f(x)所产生的响应。
在这里插入图片描述

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大大U

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值