摘 要 联邦学习(federated learning, FL)是一种可用于解决数据孤岛问题的分布式机器学习框架,多个参与方在保持数据本地私有的情况下协作训练一个共同模型.但是,传统的联邦学习没有考虑公平性的问题,在实际场景中,参与者之间的数据具有高度异构和数据量差距较大的特点,常规的聚合操作会不经意地偏向一些设备,使得最终聚合模型在不同参与者数据上的准确率表现出较大差距.针对这一问题,提出了一种有效的公平算法,称为α-FedAvg.它可以使聚合模型更公平,即其在所有参与者本地数据上的准确率分布更均衡.同时,给出了确定参数α的方法,能够在尽可能保证聚合模型性能的情况下提升其公平性.最后,在MNIST和CIFAR-10数据集上进行了实验和性能分析,并在多个数据集上与其他3种公平方案进行了对比.实验结果表明:相较于已有算法,所提方案在公平性和有效性上达到了更好的平衡.
关键词 联邦学习;公平性;有效性;权衡;资源分配
随着物联网、大数据、5G网络架构的发展,机器学习(machine learning, ML)在自动驾驶、信息检索、能源检测等领域得到了广泛应用.机器学习通过训练模型对数据进行分析,提取有用的信息.随着手机等智能设备的快速发展,数据分布趋向于本地化.单个用户或机构通常拥有较小规模或较低质量的数据,仅使用这些数据进行训练容易