解题思路
1.数据结构:
- 代码使用了一个名为
MyPoint的结构体来表示空间中的点。这个结构体包含三个属性:x和y表示点的坐标,type表示点的类型。点的类型用整数表示,类型 ‘A’ 用 0 表示,类型 ‘B’ 用 1 表示。这种方式简化了后续的逻辑判断。
2.输入处理:
- 程序首先读取两个整数
n和m。n是给定的点的总数,m是需要处理的查询(即直线)的总数。 - 对于每一个点,程序通过输入读取其坐标 (
x,y) 和类型 (type)。类型是以字符形式给出的,在存储到MyPoint结构体中时,会转换为整数(‘A’ 转换为 0,‘B’ 转换为 1)。 - 所有这些点被存储在一个名为
list的vector<MyPoint>容器中,便于后续遍历和分类。
3.处理查询:
- 对于每个查询(即每条直线),程序读取三个整数
t0、t1和t2,这些整数定义了直线的方程t0 + t1 * x + t2 * y = 0。 - 程序初始化两个集合
set0和set1,用于记录被当前直线分隔的两边各自存在哪些类型的点。 - 程序遍历所有点,对于每个点,根据直线方程计算
t0 + t1 * x + t2 * y的值:- 如果结果大于0,表示该点在直线的一侧,程序将这个点的类型添加到
set0中。 - 如果结果小于或等于0,表示该点在直线的另一侧,程序将这个点的类型添加到
set1中。
- 如果结果大于0,表示该点在直线的一侧,程序将这个点的类型添加到
- 这样,每个集合中包含了相应侧的点的类型,可以有0、1或2种类型(因为点的类型只有 ‘A’ 和 ‘B’)。
4.输出结果:
- 在对所有点进行分类后,程序检查
set0和set1中包含的点的类型。 - 如果任一集合中同时包含类型 ‘A’ 和类型 ‘B’ 的点(即该集合的大小等于2),这意味着当前的直线不能将两种类型的点完全分开,因此程序输出 “No”。
- 如果每个集合中都只包含一种类型的点(或者一个集合为空),这意味着当前直线能够将类型 ‘A’ 和类型 ‘B’ 的点分开,因此程序输出 “Yes”。

本文介绍了如何使用线性分类器解决CSP问题,通过MyPoint结构表示点,读取并处理输入数据,根据直线方程分类点,最后判断直线能否有效区分不同类型的点。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



