优云智算赋能国产AI:DeepSeek配合通义万相2.1文生视频模型生成高质量视频

阿里巴巴于2025年2月开源视频生成模型通义万相2.1,提供14B和1.3B参数版本,支持中英文视频生成及特效(如粒子效果、物理模拟),其14B在VBench榜单以86.22%得分登顶。通过优云智算平台,用户可借助其国产算力资源低成本部署,1.3B模型仅需8.2GB显存即可生成480P视频,5秒视频生成约需4分钟。通过DeepSeek进一步优化提示词(prompt),将模糊需求细化为具体场景描述,可以显著提升视频细节与场景丰富度,如生成“金毛犬追逐蝴蝶”场景时,优化后的prompt使视频文件体积增加2倍并增强观赏性。此组合方案使文生视频全流程国产化,可大幅降低创作门槛,能够有效的推动广告、影视等领域效率提升,展现开源生态的普惠价值。


🧑 博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘面试。CSDN优质创作者,提供产品测评、学习辅导、简历面试辅导、毕设辅导、项目开发、C/C++/Java/Python/Linux/AI等方面的服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:gylzbk

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

前言

2月25日晚,阿里巴巴放出一个大招:把自研的通义万相2.1文生视频模型直接开源啦!这次开源相当“大气”,用的是全球开发者都爱的Apache2.0协议,连140亿(14B)和13亿(1.3B)参数的两个版本都被完全开源了。无论是用文字生成视频(T2V),还是用图片生成视频(I2V),开发者都能在GitHub、HuggingFace这些技术社区,甚至魔搭平台上免费下载,想怎么玩就怎么玩!

先说说这俩版本的实力:
在这里插入图片描述
140亿参数的“重火力猛将:在权威考试卷VBench上直接飙到86.22分,完胜Sora、Luma这些国际选手,稳坐第一名;
小个头也有大能量的1.3B版本:虽然参数少,但表现居然超过了好多大块头开源模型,甚至能跟闭源的“黑箱选手”一较高下。最神奇的是,它能在普通显卡上跑起来,8.2GB显存就能生成480P的流畅视频,学生党和小团队研究简直太香了!

为了更好的测试通义万相的性能和效果表现,我特地从十几家GPU算力租赁平台中选择了性价比超高的国产算力平台:优云智算。新用户注册即送20元体验金,可以兑换近1天的4090显卡使用时长,非常棒,强烈安利给大家:https://www.compshare.cn/images-detail?ImageID=compshareImage-193qs5akuew3&referral_code=KsFp2NHoviAEv4Yu73Jktl&ytag=GPU_CSDN_Alex

使用4090显卡,1.3B模型生成5秒视频也就花个4分钟左右,性价比超高!实际测试3090显卡也能跑,只是时间消耗上加倍了,但就其表现来说,也算非常不错的成绩了。

1. 一键部署通义万相2.1

优云智算除了提供算力租赁服务之外,还有一个非常厉害的功能,叫社区镜像。社区镜像是经过自定义配置的操作系统镜像,包含了预安装的软件、工具或模型,可方便快速部署和使用算力资源。
在这里插入图片描述
比如,我前几天就利用平台的镜像发布能力,将通义万相2.1的1.3B模型部署到云平台上并发布为了社区镜像,目前是免费开放的,大家申请到20元新用户体验金之后,可以直接一键部署,开箱既玩。下面教大家如何快速部署。

1.1 选择镜像

  1. 点击链接直达专属镜像,点击使用该镜像创建实例按钮。
    在这里插入图片描述

1.2 实例配置

  • GPU型号:支持RTX40系和3090。实测这2个GPU都可以成功运行通义万相2.1的1.3B模型,只是生成时间有所不同。这里推荐大家选择40系,速度更快。
  • GPU数量:单GPU就可以跑,选1即可,性价比高。
  • CPU型号:该模型对CPU的消耗不大,所以选择默认的16C 64GB就足够用了。
  • 付款方式:选按量计费即可,新用户注册赠送20元体检金,可以直接抵扣,直接0元搞起来!!!
    在这里插入图片描述
    最后点击立即部署按钮,稍等1分钟,就完成部署了。部署完成后,在实例列表页,就可以看到部署好的实例了。
    在这里插入图片描述

1.3 远程登录

云服务器登录方式有2种:
1. 网页登录:复制密码之后点击登录按钮,粘贴上密码,就可以进入服务器命令行了。
在这里插入图片描述
2. SSH登录:用户名:root,密码:就是上一步复制的密码。注意:SSH端口号并不是默认的22,而是23。需要手动指定端口号为23。
在这里插入图片描述

2. 文生视频初体验

2.1 场景构建

接下来,我们想象一个场景:一只可爱的小狗在草坪上奔跑。然后我们使用通义万相2.1来生成视频,看看跟我们想象中的场景差别大不大。

2.2 视频生成

调用通义万相2.1 1.3B模型,进行文生视频的方法如下所示:

cd ~/Wan2.1-main/
python generate.py  --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --sample_shift 8 --sample_guide_scale 6 --prompt "一只可爱的小狗在草坪上奔跑"

生成完成之后,如下如所示。可以看到耗时只需要04:04(4分4秒),生成了一个名为t2v-1.3B_832*480_1_1_一只可爱的小狗在草坪上奔跑_20250311_104528.mp4的mp4视频。
在这里插入图片描述

2.3 视频下载

接下来,我们将视频下载到本地,可以使用scp工具。也可以拉起一个http 文件服务器,直接下载,方法如下:

cd ~/Wan2.1-main/
python -m http.server

文件服务器启动之后,会在8000端口启动一个http server。
在这里插入图片描述
我们使用云服务器的外网ip地址+8000端口,浏览器里访问就可以看到刚才生成的视频了,直接点击下载即可。
在这里插入图片描述

2.5 效果展示

如下所示,是刚才生成的视频:

一只可爱的小狗在草坪上奔跑

3. DeepSeek加持下的通义万相2.1

3.1 DeepSeek构建场景

从生成的视频来看,场景还是略显单调。怎么办呢?不要忘了我们还有另外一个国产之光:DeepSeek。

通过自然语言处理技术,DeepSeek可以将模糊的输入需求(如“夏日海滩”)自动扩展为具体细节描述(“夕阳、浪花、沙堡、孩童”),可以显著提升生成视频的场景完整度与细节真实感。

接下来,我们让DeepSeek为我们扩充下脚本,让视频场景更加饱满。

我:我需要使用AI工具生成一个5秒钟的视频,我想象的场景:一只可爱的小狗在草坪上奔跑,但我感觉不够饱满,帮我扩充下场景,使其更加丰满。100字以内。
DeepSeek:夏日午后,金毛幼犬在翠绿草坪追逐蓝闪蝶,肉爪扬起细碎草屑。蒲公英随风飘散,樱花树投下斑驳光影。镜头低角度跟拍,捕捉小狗跃起瞬间的粉舌与摇晃耳朵,尾巴扫过雏菊花丛。慢动作特写晶莹口水拉丝,背景虚化处可见彩色气球与野餐篮,空中飘落两片樱花瓣收尾于湛蓝天幕。

在这里插入图片描述

3.2 视频生成

接下来,再次调用通义万相模型生成视频:

cd ~/Wan2.1-main/
python generate.py  --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --sample_shift 8 --sample_guide_scale 6 --prompt "夏日午后,金毛幼犬在翠绿草坪追逐蓝闪蝶,肉爪扬起细碎草屑。蒲公英随风飘散,樱花树投下斑驳光影。镜头低角度跟拍,捕捉小狗跃起瞬间的粉舌与摇晃耳朵,尾巴扫过雏菊花丛。慢动作特写晶莹口水拉丝,背景虚化处可见彩色气球与野餐篮,空中飘落两片樱花瓣收尾于湛蓝天幕。"

生成完成之后,如下如所示。可以看到耗时04:03(4分3秒),跟之前的时间几乎一样,非常稳定。生成了一个名为t2v-1.3B_832*480_1_1_夏日午后,金毛幼犬在翠绿草坪追逐蓝闪蝶,肉爪扬起细碎草屑。蒲公英随风飘散,樱花树投下斑驳光影。镜头低_20250311_113212.mp4的mp4视频。
在这里插入图片描述

3.3 视频下载

可以在本地使用scp命令将云服务器上的视频下载到本地。

scp -P 23 root@117.50.188.250:/root/Wan2.1-main/t2v-1.3B_832*480_1_1_夏日午后,金毛幼犬在翠绿草坪追逐蓝闪蝶,肉爪扬起细碎草屑。蒲公英随风飘散,樱花树投下斑驳光影。镜头低_20250311_113212.mp4 .

3.4 效果展示

如下所示,是刚才生成的视频:

夏日午后,金毛幼犬在翠绿草坪追逐蓝闪蝶,肉爪扬起细碎草屑

4. 效果对比

4.1 视频质量

虽然不同的prompt生成时间基本一致,但是从生成的视频文件大小可以看到,差了足足2倍多。说明经过DeepSeek优化之后的prompt,生成的视频质量效果是有直线提升的。
在这里插入图片描述

4.2 体感体验

对比默认promt生成的视频,可以明显的看到,在DeepSeek的加持下,通义万相2.1生成的视频包含了更多的元素,不再是单调的一只狗在奔跑。更加吸睛,更加精彩。

默认prompt经DeepSeek优化后的prompt
在这里插入图片描述在这里插入图片描述

总结

本次文生视频的实践,全部采用了国产技术,有国产算力平台(UCloud优云智算)、文本优化工具(DeepSeek)与文生图大模型(通义万相2.1)的深度协同。

通过算力支持+prompt优化+生成模型的组合,推动文生视频生成技术全流程国产化,完全摆脱了AI领域对国外工具的依赖。国产大有可为,国产加油!!!

<think>嗯,用户之前问了关于DeepSeek是否是混合模型的问题,现在又转向询问AIGC的工程架构,并且希望有图片和更清晰的描述。我需要先确认用户对AIGC的了解程度,可能他们需要基础到进阶的内容。 首先,AIGC工程架构涉及的内容挺多的,得拆分成几个部分来讲解。用户提到要图片,但作为文本回复,我需要用文字描述结构,可能用ASCII图表或者分模块说明。用户可能希望了解整体架构的组成部分,比如数据处理、模型训练、推理部署等。 接着,要确保覆盖到生成AI的关键技术点,比如模型架构(如Transformer、Diffusion Models)、分布式训练、化技术等。用户可能对实际应用场景感兴趣,比如图像生成、文本生成,所以需要结合例子说明。 另外,用户可能想知道架构中的各个模块如何协作,比如数据处理如何支持模型训练,推理引擎如何化性能。可能还需要提到部署方面的挑战,比如延迟、资源消耗,以及解决方案如模型压缩、硬件加速。 还要注意用户可能混淆AIGC和其他AI工程概念,需要明确AIGC的定义和应用范围。最后,检查是否有遗漏的部分,比如安全性和伦理问题,虽然用户没提,但作为架构的一部分可能需要简要提及。 总之,我需要组织一个结构清晰、层次分明的回答,涵盖核心模块、关键技术、应用流程和化方法,并用文字图表辅助说明,确保用户能直观理解AIGC的工程架构。</think>以下是关于 **AIGC(AI Generated Content,生成人工智能)工程架构**的详细介绍,结合核心模块、技术流程与典型应用场景进行说明: --- ### **1. AIGC工程架构核心模块** AIGC系统的工程架构通常分为 **六大核心模块**,通过协同工作实现内容生成全流程: ```plaintext |-----------------------| | 用户交互层 | ← 用户输入(文本、图像、参数等) |--| | 模型推理引擎 | ←→ | 模型微调与化 | |-----------------------| |-----------------------| ↓ |-----------------------| | 分布式训练框架 | ← 数据并行、模型并行、混合并行 |-----------------------| ↓ |-----------------------| | 数据处理与特征工程 | ← 数据清洗、标注、增强、向量化 |-----------------------| ↓ |-----------------------| | 存储与资源管理 | ← 模型仓库、数据集管理、计算资源调度 |-----------------------| ``` --- ### **2. 关键技术组件详解** #### **(1) 模型层(生成核心)** - **主流生成模型架构**: - **文本生成**:Transformer-based(如GPT、PaLM)、MoE架构(如DeepSeek-MoE) - **图像生成**:Diffusion Models(Stable Diffusion)、GAN(StyleGAN) - **多模态生成**:CLIP引导生成、DALL·E系列 - **技术特性**: ```plaintext +-------------------+-------------------+ | 模型类型 | 典型应用 | +-------------------+-------------------+ | 自回归模型 | 长文本生成、代码生成 | | 扩散模型 | 高分辨率图像合成 | | 对抗生成网络(GAN)| 风格迁移、图像修复 | +--+ ``` #### **(2) 推理服务层** - **核心功能**: - **低延迟响应**:通过模型量化(INT8/FP16)、动态批处理(Dynamic Batching)化推理速度。 - **弹性扩展**:基于Kubernetes的自动扩缩容,应对流量峰值。 - **典型工具链**: - **推理框架**:TensorRT、ONNX Runtime、vLLM(专为LLM化) - **服务化部署**:Triton Inference Server、FastAPI + PyTorch #### **(3) 训练与化层** - **分布式训练策略**: ```plaintext Pipeline Parallelism(流水线并行) ↓ Tensor Parallelism(张量并行) → 模型参数拆分至多卡 ↓ Data Parallelism(数据并行) → 批量数据分片 ``` - **化技术**: - **混合精度训练**:FP16/FP32混合计算,节省显存。 - **梯度累积**:解决小批量训练时的梯度不稳定问题。 --- ### **3. AIGC生成流程示例(以文生图为例)** 以下是一个典型的 **Stable Diffusion 文生图工程化流程**: ```plaintext 用户输入:"赛博朋克风格的未来城市,霓虹灯光,雨夜" ↓ 文本编码器(CLIP Text Encoder) → 生成语义向量 ↓ 扩散模型(U-Net +调度器) → 迭代去噪生成潜空间特征 ↓ 图像解码器(VAE Decoder) → 潜特征转高清图像(1024x1024) ↓ 后处理 → 超分辨率(ESRGAN)、风格滤镜 ↓ 输出图像 ``` --- ### **4. 工程挑战与解决方案** | **挑战** | **解决方案** | |--|-----------------------------------------------------------------------------| | **高计算资源消耗** | 模型压缩(Pruning、Quantization)、边缘设备部署(TensorRT Lite) | | **生成内容可控性差** | ControlNet(添加骨架/边缘约束)、Prompt Engineering(细化生成指令) | | **多模态对齐困难** | CLIP跨模态对比学习、多模态联合训练(如Flamingo架构) | | **伦理与安全风险** | 内容过滤(NSFW检测)、数字水印嵌入、生成溯源(Metadata记录) | --- ### **5. 典型架构案例** #### **(1) 大规模多模态生成系统** ```plaintext 前端 │ ├─ API网关(鉴权、限流) │ ├─ 文本生成服务(GPT-4 → 生成故事脚本) │ └─ 图像生成服务(Stable Diffusion → 生成插画) │ ├─ 异步任务队列(Celery/RabbitMQ) → 处理长耗时任务 │ ├─ 模型仓库(Hugging Face Hub + 私有Registry) │ └─ 监控系统(Prometheus + Grafana) → 实时跟踪QPS/延迟/错误率 ``` #### **(2) 轻量化端侧部署方案** ```plaintext 移动端App → 调用ONNX格式轻量模型(TinyStableDiffusion) ↓ NPU加速(华为HiAI/高通SNPE) → 实时生成壁纸/表情包 ``` --- ### **6. 未来技术趋势** - **架构革新**: - **MoE+Diffusion混合架构**:提升生成质量与效率。 - **世界模型(World Model)**:实现更连贯的长内容生成(如视频生成)。 - **工程化**: - **存算一体芯片**:专为生成AI设计的硬件(如Groq LPU)。 - **联邦学习**:保护隐私的分布式模型训练。 --- 如果需要更具体的某类AIGC(如视频生成、3D建模)的架构细节,可进一步说明需求!
评论 80
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

I'mAlex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值