【凸优化】凸分析、非线性规划理论与标准算法

这学期上了李英红老师的凸优化,老师每堂课都写满黑板好几轮,激情澎湃地讲完3个45分钟。作为一个电子信息专业的学生,我选择上这门课完全是出于兴趣,能够得到老师这么认真的对待,实在非常感动且感激。
这篇笔记是教材1章的内容,在国庆假期期间整理的。后来时间紧,自己的效率也不高,忙培养方案内课程,这门课就没再整理博客。但期末复习它还是耗费了我很大的精力,一千余小时,最终只考了84分。最后一节课上考完试,我把复习资料拿去给老师签字,算是弥补了一些小小的遗憾。
整理草稿箱看到了这篇,觉得不如发出来。

1.引言

一、MP: 数学规划
  f ( x ) h i ( x ) = 0 , i = 1 , . . . , m g j ( x ) ≤ 0 , j = 1 , . . . , k   \ f(x)\\h_i(x) = 0, i=1,...,m\\g_j(x) \leq 0, j=1,...,k\,  f(x)hi(x)=0,i=1,...,mgj(x)0,j=1,...,k

  1. 约束:等式约束hi、不等式约束gj
  2. 定义域:X ∈ Rnx = (x1,x2,…,xn)为列向量(与系数矩阵相乘时),列向量中元素称为决策变量
  3. 可行域:定义域+约束
    S = X ∩ { x ∈ R n : h i ( x ) = 0 , i = 1 , . . , m , g j ( x ) ≤ 0 , j = 1 , . . . , k } , S = X \cap \{ x \in R^n : h_i(x) = 0, i=1,..,m,g_j(x) \leq 0,j=1,...,k \}, S=X{xRn:hi(x)=0,i=1,..,m,gj(x)0,j=1,...,k},

二、基本概念

  1. 全局极小点:表示为 x ∗ x_* x f ( x ∗ ) ≤ f ( x ) f(x_*) \leq f(x) f(x)f(x)。可能没有,比如 f ( x ) = 1 x f(x)= \tfrac{1}{x} f(x)=x1
  2. 下确界 f ∗ = i n f { f ( x ) : x ∈ S } f_*=inf \{f(x):x \in S \} f=inf{f(x):xS},即使无全局极小点,下确界依然可以有限。
  3. 局部极小点:定义欧氏球如下: B ( x ∗ , r ) = { x ∈ R n : ∣ ∣ x − x ∗ ∣ ∣ 2 < r } B(x_*,r)=\{x \in R^n:||x-x_*||_2<r\} B(x,r)={xRn:∣∣xx2<r}。局部极小点定义为:点 x ∗ ∈ S x_*\in S xS且存在某 r > 0 r>0 r>0,使得对所有的 x ∈ S ∩ B ( x ∗ , r ) x\in S \cap B(x_*,r) xSB(x,r) f ( x ∗ ) ≤ f ( x ) f(x_*) \leq f(x) f(x)f(x)成立。全局极小点一定是局部极小点,反之不一定成立。
    这是一个讲解范数的链接
    这是另一个链接
  4. 规划们
线性规划无约束优化离散优化连续优化
  f ( x ) = c 1 x 1 + c 2 x 2 + . . . + c n x n ≡ c T x X ∈ S = { x ∈ R n : a i T x ≤ b i , i = 1 , . . . , m } Ax ≤ b \ f(x)=c_1x_1+c_2x_2+...+c_nx_n \equiv \textbf{c}^T\textbf{x}\\X\in S=\{x\in R^n:a_i^Tx \leq b_i,i=1,...,m\}\\\textbf{Ax} \leq \textbf{b}  f(x)=c1x1+c2x2+...+cnxncTxXS={xRn:aiTxbi,i=1,...,m}Axb其中 A \textbf{A} A m ∗ n m*n mn矩阵,第i行是 a i T a_i^T aiT S = R n S=R^n S=Rn定义域 X X X是离散集 S S S连续,比如 R n R^n Rn { x ∈ R n : a ≤ x ≤ b } ) \{x \in R^n:a \leq x \leq b\}) {xRn:axb})、单纯形(没看懂什么是单纯形,是指const吗?)

2.凸集

2.1 定义和性质

定义

(1)一般: x , y ∈ X → ( 1 − θ ) x + θ y ∈ X   ∀ θ ∈ [ 0 , 1 ] \textbf{x},\textbf{y} \in X \rightarrow (1-\theta)\textbf{x}+\theta \textbf{y} \in X\ \forall\theta\in [0,1] x,yX(1θ)x+θyX θ[0,1]
(2)特殊:单点集 { x } \{x\} {x} ∅ \emptyset 都是凸集

更多例子

  1. 超平面
    (1) 定义: w T x + b = 0 w^Tx+b=0 wTx+b=0(教材上写作: s T x = c s^Tx=c sTx=c,可知关系 w = s w=s w=s b = − c b=-c b=c)。
    对超平面定义的理解:
w \textbf{w} w x \textbf{x} x b \textbf{b} b
超平面的法向量,一个n维列向量, w = ( w 1 , w 2 , . . . w n ) T w=(w_1,w_2,...w_n)^T w=(w1,w2,...wn)T。其指向的方向为超平面的正面,反向为反面  正面: w T x + b > 0 反面: w T x + b < 0 超平面上: w T x + b = 0 \ 正面:w^Tx+b>0\\反面:w^Tx+b<0\\超平面上:w^Tx+b=0  正面:wTx+b>0反面:wTx+b<0超平面上:wTx+b=0组成超平面的点集, x = ( x 1 , x 2 , . . . , x n ) T x=(x_1,x_2,...,x_n)^T x=(x1,x2,...,xn)T,可以理解为,超平面就是由一堆n维空间中的点,组成的n-1维的仿射子空间(与线性子空间区分,见表格下注[1]),本质为自由度比向量空间小1。一个常数。几何意义:超平面到原点的距离。推导过程见表下。

[1]:线性空间V的线性子空间为关于自身运算封闭的非空子集,对线性运算封闭: k ∈ R , v ∈ V , k v ∈ V k\in R,\textbf{v}\in V,k\textbf{v}\in V kR,vV,kvV,当 k = 0 k=0 k=0时一定过原点。而仿射子空间可以看作线性子空间平移某向量 a \textbf{a} a的结果,不一定过原点。比如超平面就不一定过原点,而当 w T x + b = 0 w^Tx+b=0 wTx+b=0 b = 0 b=0 b=0时,才过原点。此时超平面为凸锥。(仿射集在很近的后面会提到)
我在查阅资料的过程中,看到有的文章说超平面过原点,感觉和b的几何意义矛盾,翻了评论才明白线性子空间和仿射子空间的区别。

(2)理解:在n维空间中,给出一个超平面,其上点组成点集 I ( x 1 , x 2 , . . . , x n ) I(x_1,x_2,...,x_n) I(x1,x2,...,xn),给出超平面上一已知点 P P P及超平面法向量 n \textbf{n} n,则有: n ( I − P ) = 0 \textbf{n}(I-P)=0 n(IP)=0
可变化为: n I = n P = c o n s t \textbf{n}I=\textbf{n}P=const nI=nP=const n = w T \textbf{n}=\textbf{w}^T n=wT

(3)样本空间中点到超平面的距离公式:
d i s t a n c e = ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ distance=\dfrac{|w^Tx+b|}{||w||} distance=∣∣w∣∣wTx+b
推导:
超平面上满足 w T x + b = 0 w^Tx+b=0 wTx+b=0,若 x 0 x_0 x0也为超平面上一点,则有 w T x 0 + b = 0 w^Tx_0+b=0 wTx0+b=0。向量 ( x − x 0 ) (x-x_0) (xx0)在法向量方向上的投影为: d = ∣ w T ( x − x 0 ) ∣ ∣ ∣ w ∣ ∣ d=\dfrac{|w^T(x-x_0)|}{||w||} d=∣∣w∣∣wT(xx0)内积的几何意义用途:(1)求夹角(2)求对方方向上投影
因为 w T x 0 = − b w^Tx_0=-b wTx0=b,故 w T ( x − x 0 ) = w T x + b w^T(x-x_0)=w^Tx+b wT(xx0)=wTx+b,得证。
x 0 x_0 x0为原点时,??

  1. 半空间 H + = { x ∈ R n : s T x ≥ c } H − = { x ∈ R n : s T x ≤ c } H^+=\{x\in R^n:s^Tx \geq c\}\\ H^-=\{x \in R^n:s^Tx \leq c\} H+={xRn:sTxc}H={xRn:sTxc}

  2. 多面体 { x ∈ R n : Ax ≤ b } \{\textbf{x}\in R^n:\textbf{Ax} \leq \textbf{b}\} {xRn:Axb}有限个半空间的交集 → \rightarrow 有限个凸集的交还是凸集。

  3. 范数单位球 ∀ a ∈ R n \forall \textbf{a}\in R^n aRn { x ∈ R n : ∣ ∣ x   -   a ∣ ∣ < r } \{\textbf{x}\in R^n:||\textbf{x - a}||<r\} {xRn:∣∣x - a∣∣<r}为凸的。
    二范数单位球??
    区分多维椭球与番薯单位球的意义???

     范数:
     定义
     性质
     (1)正齐次性
     (2)三角不等式
    
  4. 椭球
    我对椭球的理解就是,每个维度的变量的平方和。如果等式右侧常数恰好为1,且左侧各平方系数相等,两边同时开方,可以得到2范数单位球。

  5. 凸集的 ϵ \epsilon ϵ-领域

这部分的作业题目以及解答如下图:

  1. 判断给出集合凸性
    请添加图片描述请添加图片描述

凸组合与凸包

  1. 凸组合 k ∈ N + k \in N^+ kN+,点 x 1 , . . . , x k ∈ R n x_1,...,x_k\in R^n x1,...,xkRn凸组合是系数非负且系数之和为1的线性组合: ∑ i = 1 k θ i x i \sum_{i=1}^{k} \theta_i x_i i=1kθixi
  2. 凸集的内表示(凸集的一种刻画):集合 X ⊊ R n X\subsetneq R^n XRn当且仅当关于取凸组合的运算封闭。
  3. 凸包
    (1)从外部刻画:包含 X X X的最小凸集是 X X X的凸包,记作 c o n v X convX convX
    (2)从内部刻画:由凸组合得到凸包 → \rightarrow 凸包是所有凸组合组成的集合。 c o n v X = X ^ = { ∑ i = 1 k θ i x i : ∀ k ∈ Z + + , x i ∈ X , θ i ≥ 0   ∀ i , ∑ i θ i = 1 } convX=\hat{X}=\{ \sum_{i=1}^{k} \theta_i \textbf{x}_i: \forall k \in Z_{++},\textbf{x}_i \in X,\theta_i \geq 0\ \forall i,\sum_{i} \theta_i =1\} convX=X^={i=1kθixi:kZ++,xiX,θi0 i,iθi=1}
    证明:(证明两个集合相等==证它们相互包含)
    X ^ ⊆ c o n v X \hat{X}\subseteq convX X^convX:包含 X X X的集合必然包含 X X X的点得到的凸组合,易证。
    c o n v X ⊆ X ^ convX \subseteq \hat{X} convXX^:先后运用凸组合和凸集的定义证明 X ^ \hat{X} X^的凸性。
    推论 X X X当且仅当 c o n v X = X convX=X convX=X

仿射

最后:回忆线性代数

余子式: M i j M_{ij} Mij
代数余子式: A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij → \rightarrow 按行展开、按列展开,乘代数余子式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我单手_拿大顶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值