速度与静力习题
5.1 用在坐标系{0}中表达的雅可比矩阵重做例5.3。是否与例5.3的结果一致?
解答:
坐标系{0}到坐标系{3}的坐标变换为
3
0
T
=
1
0
T
2
1
T
3
2
T
=
[
c
12
−
s
12
0
l
2
c
12
+
l
1
c
1
s
12
c
12
0
l
2
s
12
+
l
1
s
1
0
0
1
0
0
0
0
1
]
^0_3T=\ ^0_1T\ ^1_2T\ ^2_3T= \left [ \begin{matrix} c_{12} &-s_{12} & 0 &l_2c_{12}+l_1c_1\\ s_{12} & c_{12} &0 &l_2s_{12}+l_1s_{1} \\ 0& 0&1 &0\\ 0&0&0&1 \end{matrix}\right]
30T= 10T 21T 32T=⎣⎢⎢⎡c12s1200−s12c12000010l2c12+l1c1l2s12+l1s101⎦⎥⎥⎤
因此末端点(坐标系{3}的原点)相对于坐标系{0}的表示为
0
F
(
Θ
)
=
[
l
2
c
12
+
l
1
c
1
l
2
s
12
+
l
1
s
1
]
^0F(\Theta)=\left[\begin{matrix} l_2c_{12}+l_1c_{1} \\ l_2s_{12}+l_1s_1 \end{matrix}\right]
0F(Θ)=[l2c12+l1c1l2s12+l1s1]
其中
Θ
=
[
θ
1
θ
2
]
\Theta=\left[\begin{matrix} \theta_1\\ \theta_2\end{matrix}\right]
Θ=[θ1θ2],根据雅可比的定义
0
J
=
∂
0
F
∂
Θ
=
[
−
l
1
s
1
−
l
2
s
12
−
l
2
s
12
l
2
c
2
+
l
2
c
12
l
2
c
12
]
^0J=\frac{\partial \ ^0F}{\partial\Theta}= \left[\begin{matrix} -l_1s_{1} -l_2s_{12}&-l_2s_{12}\\ l_2c_2+l_2c_{12} & l_2c_{12} \end{matrix}\right]
0J=∂Θ∂ 0F=[−l1s1−l2s12l2c2+l2c12−l2s12l2c12]
求行列式
D
E
T
[
0
J
]
=
l
1
l
2
s
2
DET[^0J]=l_1l_2s_2
DET[0J]=l1l2s2
可见,结果与例5.3是一致的,奇异位置是
θ
2
=
0
或
18
0
∘
\theta_2=0或180^\circ
θ2=0或180∘ 。