监督学习 - 岭回归(Ridge Regression)

什么是机器学习

岭回归(Ridge Regression)是一种线性回归的扩展,它通过在损失函数中添加正则化项(L2范数)来解决线性回归中可能存在的过拟合问题。正则化项有助于限制模型的参数,使其不过分依赖于训练数据,从而提高模型的泛化能力。

岭回归的目标函数可以表示为:

在这里插入图片描述

其中:

  • J(θ) 是岭回归的目标函数
  • MSE(θ) 是均方误差(Mean Squared Error)
  • α 是正则化参数
  • θ1, θ2, ... , θn 是模型的参数

训练岭回归模型的过程是通过最小化目标函数找到最适合数据的参数。正则化项对模型的参数进行惩罚,使得参数趋向于较小的值,从而减小模型对训练数据的过拟合程度。

代码示例(使用 Python 和 scikit-learn

以下是一个使用 scikit-learn 库进行岭回归的简单示例:

from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 创建岭回归模型
ridge_model = Pipeline([
    ('scaler', StandardScaler()),  # 特征标准化
    ('ridge', Ridge(alpha=1, solver='cholesky'))  # 岭回归模型
])

# 拟合模型
ridge_model.fit(X, y)

# 预测新数据
X_new = np.array([[1.5]])
y_pred = ridge_model.predict(X_new)
print("预测结果:", y_pred[0][0])

# 绘制散点图和拟合的直线
plt.scatter(X, y, color='blue')
plt.plot(X, ridge_model.predict(X), color='red', linewidth=3)
plt.xlabel("自变量")
plt.ylabel("因变量")
plt.title("岭回归")
plt.show()

在这个例子中,我们使用了 scikit-learnRidge 类来构建岭回归模型。模型中的 alpha 参数表示正则化强度,你可以根据实际问题调整这个参数。模型还包括一个 StandardScaler,用于对输入特征进行标准化。这是因为在岭回归中,正则化项对参数的惩罚是基于特征的尺度计算的,因此标准化可以确保各个特征的尺度一致。

  • 11
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 岭回归是一种线性回归的方法,它可以解决在样本量少于变量数的情况下出现的过拟合问题。该方法通过在回归中加入L2惩罚项来调整回归系数,从而使得模型更加简洁和平滑。这种方法可以防止变量之间的多重共线性,并且在某些情况下可以提高模型的预测能力。 ### 回答2: 岭回归是一种预测模型,在多元线性回归分析中被用来解决共线性和多重共线性问题。通常,这些问题会导致模型过拟合,即模型捕获了噪声而不是数据背后的真实关系。通过引入正则化项,岭回归可以压缩回归系数,达到减少预测误差和提高模型精度的效果。 岭回归是由Hoerl和Kennard在1970年发明的,其核心思想是在原有的普通最小二乘回归模型的基础上加入一个罚项。该罚项是λ乘以模型参数的平方和,在不同的λ值下,岭回归可以得到多个不同的回归系数。λ的值越大,回归系数就越小,岭回归就越稳定。 另外,岭回归也可以通过最小化残差平方和和惩罚项之和来求解回归系数。这样做相当于是在寻找最优解的同时,限制了参数的大小和方差。因此,岭回归可以在样本量小和特征数目大的情况下得到较为准确的结果,同时也可以处理响应变量和预测变量之间的高度相关的情况。 总的来说,岭回归是一种灵活且有效的回归方法,可以有效地解决共线性和多重共线性问题,提高模型的性能和稳定性。岭回归可以应用于各行各业,例如金融、生物学、医学、社会科学等领域。 ### 回答3: 岭回归是一种线性回归模型,它通过在模型中加入惩罚项,来处理多重共线性问题。多重共线性的问题通常出现在自变量之间存在高度相关性的情况下,它会导致模型估计不稳定、方差很大或完全失效。 在岭回归中,我们通过加入一个惩罚项来避免过多依赖同一组自变量所引起的模型不稳定的问题。迭代求解过程中,我们先对数据进行标准化处理,然后选择一系列不同的正则化参数进行模型训练,最后通过交叉验证来选择一个最佳的正则化参数。最终得到的模型对线性回归进行了改进,提高了其在测试数据中的泛化能力和稳定性。 岭回归与Lasso回归相似,但是它们在选择正则化参数时所使用的惩罚项不同。岭回归使用了L2正则化项,而Lasso回归使用的是L1正则化项。L2正则化项引入了自变量的平方和,而L1正则化项取自变量绝对值之和。这两个方法都可以有效地控制模型的复杂度。 岭回归模型优劣取决于正则化参数的选择。如果选择的正则化参数过小,岭回归就会失去对多重共线性的抑制作用,而过大的正则化参数又会导致模型对数据的拟合程度不佳。在实际应用中,我们往往采用交叉验证来选择最优正则化参数,以确保模型的稳定性和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值