【理解机器学习算法】之岭回归Ridge - L2 Rgularization

本文介绍了Ridge回归在处理多元线性回归中共线性问题的方法,通过在损失函数中添加正则化项来稳定模型参数。文章详细讲解了Ridge回归的系数计算、正则化参数alpha的选择及其对模型复杂度的影响,以及如何使用sklearn中的GridSearchCV进行参数优化。此外,还探讨了系数路径在模型解释和特征选择中的作用。
摘要由CSDN通过智能技术生成

Ridge 回归(Ridge Regression)也称作岭回归或脊回归,是一种专用于共线性数据分析的有偏估计回归方法。在多元线性回归中,如果数据集中的特征(自变量)高度相关,也就是说存在共线性(Multicollinearity),那么模型参数估计将变得不稳定,输出结果的方差会非常大。Ridge 回归通过在损失函数中增加一个正则项来解决这个问题。

Ridge 回归的损失函数包括两部分:数据的预测误差和一个与系数大小相关的正则化项。该正则化项是系数的L2范数乘以一个称为 `alpha` 的参数。Ridge 回归的目标是最小化以下的损失函数:

这里:
- 表示预测误差,即实际观测值与模型预测值之间差的平方和。
- 是系数向量的L2范数的平方,也就是各系数平方和。
- 是正则化强度,控制着正则化项的大小。

正则化参数 `alpha` 决定了你想对模型系数的大小施加多大的惩罚。`alpha` 的值越大,对系数的惩罚越重,系数越倾向于变小,模型的复杂度就越低,这有助于防止模型过拟合。相反,如果 `alpha` 设得太小,正则化的效果就会弱,可能不能有效地处理共线性(Multicollinearity)问题。

Ridge 回归的系数 \( \beta \) 可以通过解析方法得到,计算公式为:

其中是单位矩阵。

在实践中,Ridge 回归特别适用于当你有很多相互关联的预测变量时,因为它会保留所有的预测变量,但是会减小变量的系数,使模型对数据中的随机误差不那么敏感。

由于正则化,Ridge 回归能够提高模型的泛化能力,但同时也会引入一定的偏差。因此,选择合适的 `alpha` 值是应用Ridge回归的关键。这通常通过交叉验证

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thinking in Stock

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值