机器视觉入门之路(十八,图像旋转再进一步)

我们中心旋转图像之后,屏幕坐标系想要回到笛卡尔(数学)坐标系,该怎么办(即y轴翻转,镜像翻转)?

公式如下:(x,y,1)\begin{bmatrix}1 ,0 ,0\\ 0 ,-1 ,0\\0,0, 1 \end{bmatrix}=(x,-y,1)

那么,我想,(x,y,1)\begin{bmatrix} ? \end{bmatrix}=(x-181,-(y-181),1)

显然\begin{bmatrix} ? \end{bmatrix}=\begin{bmatrix}1 ,0 ,0\\ 0 ,-1 ,0\\-181,-1*-181, 1 \end{bmatrix},即平移和y轴镜像翻转

其实这样一翻转,我们的图像就不见了,不信你试试看:

(x0,y0,1)\begin{bmatrix}1 ,0 ,0\\ 0 ,1 ,0\\-128,-128, 1 \end{bmatrix}*\begin{bmatrix} cos(0.78) ,-sin(0.78) ,0\\ sin(0.78) ,cos(0.78) ,0\\0,0, 1 \end{bmatrix}\begin{bmatrix}1 ,0 ,0\\ 0 ,-1 ,0\\181,-181, 1 \end{bmatrix}=(x,y,1)

为什么要这么折腾(自嘲)?其实为我们坐标系的矩阵变换打好基础。

如果你做好准备,那么我们后面不再用以下方式:

\begin{bmatrix}1 ,0 ,\Delta x\\ 0 ,1 ,\Delta y\\0,0, 1 \end{bmatrix}\begin{bmatrix} x0\\ y0\\ 1 \end{bmatrix}

而统一用,诸如此类

(x0,y0,1)\begin{bmatrix}1 ,0 ,0\\ 0 ,1 ,0\\\Delta x,\Delta y, 1 \end{bmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值