【高等数学笔记】关于二元函数可微的充分条件

上篇文章中,我们介绍了二元函数可微的一个充分条件:

定理2 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)得的某个邻域内有定义,若 f ( x , y ) f(x,y) f(x,y)的两个偏导数均在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,则该函数在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微。

但我们事实上还可以弱化这个条件。

定理2’ 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)得的某个邻域内有定义,若 f y ( x , y ) f_y(x,y) fy(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,且 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0)存在,则 z z z在该点可微。
证明:考虑 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = [ f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) ] + [ f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) ] \begin{aligned}\Delta z&=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)\\&=[f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)]+[f(x_0+\Delta x,y_0)-f(x_0,y_0)]\end{aligned} Δz=f(x0+Δx,y0+Δy)f(x0,y0)=[f(x0+Δx,y0+Δy)f(x0+Δx,y0)]+[f(x0+Δx,y0)f(x0,y0)]左边使用拉拉格朗日中值定理得 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) = f y ( x 0 + Δ x , y 0 + θ Δ y ) Δ y f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)=f_y(x_0+\Delta x,y_0+\theta\Delta y)\Delta y f(x0+Δx,y0+Δy)f(x0+Δx,y0)=fy(x0+Δx,y0+θΔy)Δy其中 θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)。由于 f y ( x , y ) f_y(x,y) fy(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)连续,故有 lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) f y ( x + Δ x , y + θ Δ y ) = f y ( x 0 , y 0 ) \lim_{(\Delta x,\Delta y)\to(0,0)}f_y(x+\Delta x,y+\theta\Delta y)=f_y(x_0,y_0) (Δx,Δy)(0,0)limfy(x+Δx,y+θΔy)=fy(x0,y0) α 1 = α 1 ( y ) \alpha_1=\alpha_1(y) α1=α1(y)为一个无穷小量,则有 f y ( x + Δ x , y + θ Δ y ) = f y ( x 0 , y 0 ) + α 1 f_y(x+\Delta x,y+\theta\Delta y)=f_y(x_0,y_0)+\alpha_1 fy(x+Δx,y+θΔy)=fy(x0,y0)+α1 x x x而言,我们有 f x ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f_x(x_0,y_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0) f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) = [ f x ( x 0 , y 0 ) + α 2 ] Δ x f(x_0+\Delta x,y_0)-f(x_0,y_0)=[f_x(x_0,y_0)+\alpha_2]\Delta x f(x0+Δx,y0)f(x0,y0)=[fx(x0,y0)+α2]Δx其中 α 2 = α 2 ( x ) \alpha_2=\alpha_2(x) α2=α2(x)为无穷小量。那么 Δ z = [ f y ( x 0 , y 0 ) + α 1 ] Δ y + [ f x ( x 0 , y 0 ) + α 2 ] Δ x = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + α 1 Δ y + α 2 Δ x \Delta z=[f_y(x_0,y_0)+\alpha_1]\Delta y+[f_x(x_0,y_0)+\alpha_2]\Delta x=f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y+\alpha_1\Delta y+\alpha_2\Delta x Δz=[fy(x0,y0)+α1]Δy+[fx(x0,y0)+α2]Δx=fx(x0,y0)Δx+fy(x0,y0)Δy+α1Δy+α2Δx只需证 α 1 Δ y + α 2 Δ x = o ( ρ ) ,    ρ = ( Δ x ) 2 + ( Δ y ) 2 \alpha_1\Delta y+\alpha_2\Delta x=o(\rho),\ \ \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} α1Δy+α2Δx=o(ρ),  ρ=(Δx)2+(Δy)2
∣ Δ x ∣ ≤ ρ , ∣ Δ y ∣ ≤ ρ |\Delta x|\le\rho,|\Delta y|\le\rho Δxρ,Δyρ lim ⁡ ρ → 0 ∣ α 1 Δ y + α 2 Δ x ∣ ρ ≤ lim ⁡ ρ → 0 ∣ α 1 ρ + α 2 ρ ∣ ρ = 0 \lim_{\rho\to0}\frac{|\alpha_1\Delta y+\alpha_2\Delta x|}{\rho}\le\lim_{\rho\to0}\frac{|\alpha_1\rho+\alpha_2\rho|}{\rho}=0 ρ0limρα1Δy+α2Δxρ0limρα1ρ+α2ρ=0一个函数的绝对值的极限为 0 0 0,那它本身的极限肯定是 0 0 0。因此 α 1 Δ y + α 2 Δ x = o ( ρ ) \alpha_1\Delta y+\alpha_2\Delta x=o(\rho) α1Δy+α2Δx=o(ρ),定理证毕。∎


一道例题:
当( )时, f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)处可微。
A. lim ⁡ ( x , y ) → ( 0 , 0 ) [ f ( x , y ) − f ( 0 , 0 ) ] = 0 \lim_{(x,y)\to(0,0)}[f(x,y)-f(0,0)]=0 (x,y)(0,0)lim[f(x,y)f(0,0)]=0B. lim ⁡ x → 0 f ( x , 0 ) − f ( 0 , 0 ) x = lim ⁡ y → 0 f ( 0 , y ) − f ( 0 , 0 ) y = 0 \lim_{x\to0}\frac{f(x,0)-f(0,0)}{x}=\lim_{y\to0}\frac{f(0,y)-f(0,0)}{y}=0 x0limxf(x,0)f(0,0)=y0limyf(0,y)f(0,0)=0C. lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) − f ( 0 , 0 ) x 2 + y 2 = 0 \lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}=0 (x,y)(0,0)limx2+y2 f(x,y)f(0,0)=0D. lim ⁡ x → 0 [ f x ( x , 0 ) − f x ( 0 , 0 ) ] = lim ⁡ y → 0 [ f y ( 0 , y ) − f y ( 0 , 0 ) ] = 0 \lim_{x\to0}[f_x(x,0)-f_x(0,0)]=\lim_{y\to0}[f_y(0,y)-f_y(0,0)]=0 x0lim[fx(x,0)fx(0,0)]=y0lim[fy(0,y)fy(0,0)]=0
答案是C。A、B分别代表连续和偏导数存在,不能说明可微。D是一个坑,注意,题目中并没有蕴含 f x ( x , y ) f_x(x,y) fx(x,y) f y ( x , y ) f_y(x,y) fy(x,y) ( 0 , 0 ) (0,0) (0,0)连续,因为只有一个变量趋于 0 0 0。D有一个反例: f ( x , y ) = { 1 , x y = 0 0 , x y ≠ 0 f(x,y)=\begin{cases}1,&xy=0\\0,&xy\ne0\end{cases} f(x,y)={1,0,xy=0xy=0这个函数仅在坐标轴上函数值为 1 1 1,在其他点函数值都为 0 0 0。它满足 D D D的条件,但甚至在 ( 0 , 0 ) (0,0) (0,0)不连续。
对于C,分别将 x = 0 x=0 x=0 y = 0 y=0 y=0带入得 f x ( 0 , 0 ) = f y ( 0 , 0 ) = 0 f_x(0,0)=f_y(0,0)=0 fx(0,0)=fy(0,0)=0。而可微时 Δ f = f x ( 0 , 0 ) Δ x + f y ( 0 , 0 ) Δ y + o ( ρ ) = o ( ρ ) \Delta f=f_x(0,0)\Delta x+f_y(0,0)\Delta y+o(\rho)=o(\rho) Δf=fx(0,0)Δx+fy(0,0)Δy+o(ρ)=o(ρ)所以只需要说明 f ( x , y ) = o ( ρ ) f(x,y)=o(\rho) f(x,y)=o(ρ)即可。而 lim ⁡ ( x , y ) → ( 0 , 0 ) Δ f ρ = lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) − f ( 0 , 0 ) x 2 + y 2 = 0 \lim_{(x,y)\to(0,0)}\frac{\Delta f}{\rho}=\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}=0 (x,y)(0,0)limρΔf=(x,y)(0,0)limx2+y2 f(x,y)f(0,0)=0 Δ f = o ( ρ ) \Delta f=o(\rho) Δf=o(ρ),所以它可微。

  • 5
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值