0503定积分的换元法和分部积分法-定积分-高等数学

1 定积分的换元法

定理 假设函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续,函数 x = ϕ ( t ) x=\phi(t) x=ϕ(t)满足条件:

(1) ϕ ( α ) = a , ϕ ( β ) = b \phi(\alpha)=a,\phi(\beta)=b ϕ(α)=a,ϕ(β)=b;

(2) ϕ ( x ) 在 [ α , β ] (或 [ β , α ] ) \phi(x)在[\alpha, \beta](或[\beta,\alpha]) ϕ(x)[α,β](或[β,α]上具有连续导数,且其值域 R ϕ = [ a , b ] R_\phi=[a,b] Rϕ=[a,b],则有

∫ a b f ( x ) d x = ∫ α β f [ ϕ ( t ) ] ϕ ′ ( t ) d t \int_a^bf(x)dx=\int_\alpha^\beta f[\phi(t)]\phi{'}(t)dt abf(x)dx=αβf[ϕ(t)]ϕ(t)dt (3-1)

公式(3-1)称为定积分的换元公式。

证明:公式两边被积函数都是连续的,则两边都可积,且存在原函数 应用微积分基本公式,假设 F ( x ) 是 f ( x ) 的一个原函数,则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) 令 Φ ( t ) = F [ ϕ ( t ) ] , 则 Φ ′ ( t ) = f [ ϕ ( t ) ] ϕ ′ ( t ) 那么 Φ ( t ) 是 f [ ϕ ( t ) ] ϕ ′ ( t ) 的一个原函数 , ∴ ∫ α β f [ ϕ ( t ) ] ϕ ′ ( t ) d t = Φ ( β ) − Φ ( α ) ∵ x = ϕ ( t ) , ϕ ( α ) = a , ϕ ( β ) = b ∴ ∫ a b f ( x ) d x = F ( b ) − F ( a ) = Φ ( β ) − Φ ( α ) = ∫ α β f [ ϕ ( t ) ] ϕ ′ ( t ) d t 证明:公式两边被积函数都是连续的,则两边都可积,且存在原函数\\ 应用微积分基本公式,假设F(x)是f(x)的一个原函数,则\\ \int_a^bf(x)dx=F(b)-F(a)\\ 令\Phi(t)=F[\phi(t)],则\Phi^{'}(t)=f[\phi(t)]\phi^{'}(t)\\ 那么\Phi(t)是f[\phi(t)]\phi^{'}(t)的一个原函数,\\ ∴\int_\alpha^\beta f[\phi(t)]\phi^{'}(t)dt=\Phi(\beta)-\Phi(\alpha)\\ ∵x=\phi(t),\phi(\alpha)=a,\phi(\beta)=b\\ ∴\int_a^b f(x)dx=F(b)-F(a)=\Phi(\beta)-\Phi(\alpha)\\ =\int_\alpha^\beta f[\phi(t)]\phi^{'}(t)dt 证明:公式两边被积函数都是连续的,则两边都可积,且存在原函数应用微积分基本公式,假设F(x)f(x)的一个原函数,则abf(x)dx=F(b)F(a)Φ(t)=F[ϕ(t)],Φ(t)=f[ϕ(t)]ϕ(t)那么Φ(t)f[ϕ(t)]ϕ(t)的一个原函数,αβf[ϕ(t)]ϕ(t)dt=Φ(β)Φ(α)x=ϕ(t),ϕ(α)=a,ϕ(β)=babf(x)dx=F(b)F(a)=Φ(β)Φ(α)=αβf[ϕ(t)]ϕ(t)dt

注:

  • α < β \alpha\lt\beta α<β时,公式仍然成立;

  • 更新积分变量,相应的积分限也要做变换;

  • 换元公式可以反过来使用即
    ∫ α β f [ ϕ ( t ) ] ϕ ′ ( t ) d t = x = ϕ ( t ) ∫ a b f ( x ) d t \int_\alpha^\beta f[\phi(t)]\phi^{'}(t)dt\overset{x=\phi(t)}=\int_a^bf(x)dt αβf[ϕ(t)]ϕ(t)dt=x=ϕ(t)abf(x)dt

例1 求 ∫ 0 2 2 − x 2 d x \int_0^{\sqrt{2}}\sqrt{2-x^2}dx 02 2x2 dx

解:令 x = 2 t , 则 d x = 2 d t , t ∈ [ 0 , 1 ] ∫ 0 2 2 − x 2 d x = ∫ 0 1 2 − 2 t 2 ⋅ 2 d t = 2 ∫ 0 1 1 − t 2 d t = ( t 1 − t 2 + arcsin ⁡ t ) ∣ 0 1 = π 2 解:令x=\sqrt{2}t,则dx=\sqrt{2}dt,t\in[0,1]\\ \int_0^{\sqrt{2}}\sqrt{2-x^2}dx=\int_0^1\sqrt{2-2t^2}\cdot\sqrt{2}dt\\ =2\int_0^1\sqrt{1-t^2}dt=(t\sqrt{1-t^2}+\arcsin t)|_0^1=\frac{\pi}{2} 解:令x=2 t,dx=2 dt,t[0,1]02 2x2 dx=0122t2 2 dt=2011t2 dt=(t1t2 +arcsint)01=2π

例2 求 ∫ 0 π 2 cos ⁡ 5 x sin ⁡ x d x \int_0^{\frac{\pi}{2}}\cos^5x\sin xdx 02πcos5xsinxdx
解: ∫ 0 π 2 cos ⁡ 5 x sin ⁡ x d x = − ∫ 0 π 2 cos ⁡ 5 x d cos ⁡ x = − 1 6 cos ⁡ 6 x ∣ 0 π 2 = 1 6 解:\int_0^{\frac{\pi}{2}}\cos^5x\sin xdx=-\int_0^{\frac{\pi}{2}}\cos^5xd\cos x\\ =-\frac{1}{6}\cos^6x|_0^{\frac{\pi}{2}}=\frac{1}{6} 解:02πcos5xsinxdx=02πcos5xdcosx=61cos6x02π=61
注:凑微分形式,积分变量不变,积分限也不变

例3 求 ∫ − π 2 π 2 cos ⁡ x − cos ⁡ 3 x d x \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{\cos x-\cos^3x}dx 2π2πcosxcos3x dx
解: ∫ − π 2 π 2 cos ⁡ x − cos ⁡ 3 x d x = ∫ − π 2 π 2 ∣ sin ⁡ x ∣ cos ⁡ x d x = − ∫ − π 2 0 sin ⁡ x cos ⁡ x d x + ∫ 0 π 2 sin ⁡ x cos ⁡ x d x = 2 3 cos ⁡ 3 2 x ∣ − π 2 0 − 2 3 cos ⁡ 3 2 x ∣ 0 π 2 = 4 3 解:\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{\cos x-\cos^3x}dx\\ =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin x|\sqrt{\cos x}dx\\ =-\int_{-\frac{\pi}{2}}^0\sin x\sqrt{\cos x}dx+\int_0^{\frac{\pi}{2}}\sin x\sqrt{\cos x}dx\\ =\frac{2}{3}\cos^{\frac{3}{2}}x|_{-\frac{\pi}{2}}^0-\frac{2}{3}\cos^{\frac{3}{2}}x|_0^{\frac{\pi}{2}}\\ =\frac{4}{3} 解:2π2πcosxcos3x dx=2π2πsinxcosx dx=2π0sinxcosx dx+02πsinxcosx dx=32cos23x2π032cos23x02π=34
例4 求 ∫ 0 4 x + 2 2 x + 1 d x \int_0^4\frac{x+2}{\sqrt{2x+1}}dx 042x+1 x+2dx
解:令 2 x + 1 = t , x = 1 2 ( t 2 − 1 ) , d x = t d t , t ∈ [ 1 , 3 ] ∫ 0 4 x + 2 2 x + 1 d x = ∫ 1 3 1 2 ( t 2 − 1 ) + 2 t ⋅ t d t = 1 6 t 3 ∣ 1 3 + 3 2 t ∣ 1 3 = 22 3 解:令\sqrt{2x+1}=t,x=\frac{1}{2}(t^2-1),dx=tdt,t\in[1,3]\\ \int_0^4\frac{x+2}{\sqrt{2x+1}}dx=\int_1^3\frac{\frac{1}{2}(t^2-1)+2}{t}\cdot tdt\\ =\frac{1}{6}t^3|_1^3+\frac{3}{2}t|_1^3=\frac{22}{3} 解:令2x+1 =t,x=21(t21),dx=tdt,t[1,3]042x+1 x+2dx=13t21(t21)+2tdt=61t313+23t13=322

例5 求 ∫ e e 3 4 d x x ln ⁡ x ( 1 − ln ⁡ x ) \int_{\sqrt{e}}^{e^{\frac{3}{4}}}\frac{dx}{x\sqrt{\ln x(1-\ln x)}} e e43xlnx(1lnx) dx
解: ∫ e e 3 4 d x x ln ⁡ x ( 1 − ln ⁡ x ) = ∫ e e 3 4 d ln ⁡ x ln ⁡ x ( 1 − ln ⁡ x ) = 2 ∫ e e 3 4 d ( ln ⁡ x ) ( 1 − ( ln ⁡ x ) 2 ) = 2 [ arcsin ⁡ ( ln ⁡ x ) ] ∣ e e 3 4 = π 6 解:\int_{\sqrt{e}}^{e^{\frac{3}{4}}}\frac{dx}{x\sqrt{\ln x(1-\ln x)}}=\int_{\sqrt{e}}^{e^{\frac{3}{4}}}\frac{d\ln x}{\sqrt{\ln x(1-\ln x)}}\\ =2\int_{\sqrt{e}}^{e^{\frac{3}{4}}}\frac{d(\sqrt{\ln x})}{\sqrt{(1-(\sqrt{\ln x})^2)}}\\ =2[\arcsin(\sqrt{\ln x})]|_{\sqrt{e}}^{e^\frac{3}{4}}=\frac{\pi}{6} 解:e e43xlnx(1lnx) dx=e e43lnx(1lnx) dlnx=2e e43(1(lnx )2) d(lnx )=2[arcsin(lnx )]e e43=6π
例6 证明

(1)若 f ( x ) 在 [ − a , a ] f(x)在[-a,a] f(x)[a,a]上连续且为偶函数,则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{-a}^af(x)dx=2\int_0^af(x)dx aaf(x)dx=20af(x)dx

(2)若 f ( x ) 在 [ − a , a ] f(x)在[-a,a] f(x)[a,a]上连续且为奇函数,则 ∫ − a a f ( x ) d x = 0 \int_{-a}^af(x)dx=0 aaf(x)dx=0
证明: ∫ − a a f ( x ) d x = ∫ − a 0 f ( x ) d x + ∫ 0 a f ( x ) d x 令 x = − t , 则 d x = − d t , x ∈ [ − a , 0 ] , t ∈ [ 0 , a ] = − ∫ a 0 f ( − t ) d t + ∫ 0 a f ( t ) d t = ∫ 0 a f ( − t ) d t + ∫ 0 a f ( t ) d t ( 1 − 1 ) ( 1 ) 当 f ( x ) 为偶函数时, ( 1 − 1 ) 式 = ∫ 0 a ( t ) d t + ∫ 0 a f ( t ) d t = 2 ∫ 0 a f ( t ) d t , 即 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x ( 2 ) 当 f ( x ) 为奇函数时, ( 1 − 1 ) 式 = − ∫ 0 a f ( t ) d t + ∫ 0 a f ( t ) d t = 0 , 即 ∫ − a a f ( x ) d x = 0 证明:\int_{-a}^af(x)dx=\int_{-a}^0f(x)dx+\int_0^af(x)dx\\ 令x=-t,则dx=-dt,x\in[-a,0],t\in[0,a]\\ =-\int_a^0f(-t)dt+\int_0^af(t)dt=\int_0^af(-t)dt+\int_0^af(t)dt\qquad(1-1)\\ (1)当f(x)为偶函数时,\\ (1-1)式=\int_0^a(t)dt+\int_0^af(t)dt=2\int_0^af(t)dt,即\\ \int_{-a}^af(x)dx=2\int_0^af(x)dx (2)当f(x)为奇函数时,\\ (1-1)式=-\int_0^af(t)dt+\int_0^af(t)dt=0,即\\ \int_{-a}^af(x)dx=0 证明:aaf(x)dx=a0f(x)dx+0af(x)dxx=t,dx=dt,x[a,0],t[0,a]=a0f(t)dt+0af(t)dt=0af(t)dt+0af(t)dt(11)(1)f(x)为偶函数时,(11)=0a(t)dt+0af(t)dt=20af(t)dt,aaf(x)dx=20af(x)dx(2)f(x)为奇函数时,(11)=0af(t)dt+0af(t)dt=0,aaf(x)dx=0
例7 求 ∫ − 1 1 2 x 2 + x cos ⁡ x 1 + 1 − x 2 d x \int_{-1}^1\frac{2x^2+x\cos x}{1+\sqrt{1-x^2}}dx 111+1x2 2x2+xcosxdx​​
解: ∫ − 1 1 2 x 2 + x cos ⁡ x 1 + 1 − x 2 d x = ∫ − 1 1 2 x 2 1 + 1 − x 2 d x + ∫ − 1 1 x cos ⁡ x 1 + 1 − x 2 d x 因为 2 x 2 1 + 1 − x 2 在作用域 ( − ∞ , + ∞ ) 内为偶函数, x cos ⁡ x 1 + 1 − x 2 在作用域 ( − ∞ , + ∞ ) 内为奇函数,所以 上式 = 2 ∫ 0 1 2 x 2 1 + 1 − x 2 + 0 = 2 ∫ 0 1 2 x 2 ( 1 − 1 − x 2 ) ( 1 + 1 − x 2 ) ( 1 − 1 − x 2 ) d x = 4 ∫ 0 1 ( 1 − 1 − x 2 ) d x = 4 − π 解:\int_{-1}^1\frac{2x^2+x\cos x}{1+\sqrt{1-x^2}}dx=\int_{-1}^1\frac{2x^2}{1+\sqrt{1-x^2}}dx+\int_{-1}^1\frac{x\cos x}{1+\sqrt{1-x^2}}dx\\ 因为\frac{2x^2}{1+\sqrt{1-x^2}}在作用域(-\infty,+\infty)内为偶函数,\frac{x\cos x}{1+\sqrt{1-x^2}}在作用域(-\infty,+\infty)内为奇函数,所以\\ 上式=2\int_0^1\frac{2x^2}{1+\sqrt{1-x^2}}+0=2\int_0^1\frac{2x^2(1-\sqrt{1-x^2})}{(1+\sqrt{1-x^2})(1-\sqrt{1-x^2})}dx\\ =4\int_0^1(1-\sqrt{1-x^2})dx=4-\pi 解:111+1x2 2x2+xcosxdx=111+1x2 2x2dx+111+1x2 xcosxdx因为1+1x2 2x2在作用域(,+)内为偶函数,1+1x2 xcosx在作用域(,+)内为奇函数,所以上式=2011+1x2 2x2+0=201(1+1x2 )(11x2 )2x2(11x2 )dx=401(11x2 )dx=4π

$$

$$

  • 形如 ∫ 0 a a 2 − x 2 d x \int_0^a\sqrt{a^2-x^2}dx 0aa2x2 dx的定积分,可以利用定积分的几何意义,等价于求 x 2 + y 2 = a 2 圆的 1 4 面积,为 1 4 π a 2 x^2+y^2=a^2圆的\frac{1}{4}面积,为\frac{1}{4}\pi a^2 x2+y2=a2圆的41面积,为41πa2

例8 若 f ( x ) ∈ [ 0 , 1 ] f(x)\in[0,1] f(x)[0,1],证明

(1) ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x \int_0^\frac{\pi}{2}f(\sin x)dx=\int_0^\frac{\pi}{2}f(\cos x)dx 02πf(sinx)dx=02πf(cosx)dx

(2) ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int_0^\pi xf(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx

由此计算 ∫ 0 π x sin ⁡ x 1 + cos ⁡ 2 x \int_0^\pi\frac{x\sin x}{1+\cos^2x} 0π1+cos2xxsinx
证明:( 1 )令 x = π 2 − t , d x = − d t , 则 ∫ 0 π 2 f ( sin ⁡ x ) d x = − ∫ π 2 0 f [ sin ⁡ ( π 2 − t ) ] d t = ∫ 0 π 2 f ( cos ⁡ x ) d x ( 2 ) 令 x = π − t , d x = − d t , t ∈ [ 0 , π ] ∫ 0 π x f ( sin ⁡ x ) d x = − ∫ π 0 ( π − t ) f [ sin ⁡ ( π − t ) ] d t = ∫ 0 π ( π − t ) f ( sin ⁡ t ) d t = π ∫ 0 π f ( sin ⁡ t ) d t − t ∫ 0 π f ( sin ⁡ t ) d t 则 ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x 计算 ∫ 0 π x sin ⁡ x 1 + cos ⁡ 2 x d x = π 2 ∫ 0 π sin ⁡ x 1 + cos ⁡ 2 x d x = − π 2 ∫ 0 π 1 1 + cos ⁡ 2 x d ( cos ⁡ x ) = − π 2 ( arctan ⁡ cos ⁡ x ∣ 0 π ) = π 2 4 证明:(1)令x=\frac{\pi}{2}-t,dx=-dt,则\\ \int_0^\frac{\pi}{2}f(\sin x)dx=-\int_\frac{\pi}{2}^0f[\sin(\frac{\pi}{2}-t)]dt\\ =\int_0^\frac{\pi}{2}f(\cos x)dx\\ (2)令x=\pi-t,dx=-dt,t\in[0,\pi]\\ \int_0^\pi xf(\sin x)dx=-\int_\pi^0(\pi-t)f[\sin(\pi-t)]dt\\ =\int_0^\pi(\pi-t)f(\sin t)dt=\pi\int_0^\pi f(\sin t)dt-t\int_0^\pi f(\sin t)dt\\ 则\int_0^\pi xf(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x)dx\\ 计算\int_0^\pi\frac{x\sin x}{1+\cos^2x}dx=\frac{\pi}{2}\int_0^\pi\frac{\sin x}{1+\cos^2x}dx\\ =-\frac{\pi}{2}\int_0^\pi\frac{1}{1+\cos^2x}d(\cos x)=-\frac{\pi}{2}(\arctan\cos x|_0^\pi)=\frac{\pi^2}{4} 证明:(1)令x=2πt,dx=dt,02πf(sinx)dx=2π0f[sin(2πt)]dt=02πf(cosx)dx(2)x=πt,dx=dt,t[0,π]0πxf(sinx)dx=π0(πt)f[sin(πt)]dt=0π(πt)f(sint)dt=π0πf(sint)dtt0πf(sint)dt0πxf(sinx)dx=2π0πf(sinx)dx计算0π1+cos2xxsinxdx=2π0π1+cos2xsinxdx=2π0π1+cos2x1d(cosx)=2π(arctancosx0π)=4π2

例9 若 f ( x ) f(x) f(x)为连续函数,求 d d x ∫ 0 x t f ( x 2 − t 2 ) d t \frac{d}{dx}\int_0^xtf(x^2-t^2)dt dxd0xtf(x2t2)dt
解:令 x 2 − t 2 = u , x 为积分上限, t 是积分变量, x 选定就是常数 . 对上式两边求导得 − 2 t d t = d u , s d t = − 1 2 d u , u ∈ [ 0 , x 2 ] 则 ∫ 0 x t f ( x 2 − t 2 ) d t = − 1 2 ∫ x 2 0 f ( u ) d u = 1 2 ∫ 0 x 2 f ( u ) d u d d x ∫ 0 x t f ( x 2 − t 2 ) d t = x f ( x 2 ) 解:令x^2-t^2=u,\\ x为积分上限,t是积分变量,x选定就是常数.对上式两边求导得\\ -2tdt=du,sdt=-\frac{1}{2}du,u\in[0,x^2]\\ 则\int_0^xtf(x^2-t^2)dt=-\frac{1}{2}\int_{x^2}^0f(u)du=\frac{1}{2}\int_0^{x^2}f(u)du\\ \frac{d}{dx}\int_0^xtf(x^2-t^2)dt=xf(x^2) 解:令x2t2=u,x为积分上限,t是积分变量,x选定就是常数.对上式两边求导得2tdt=du,sdt=21du,u[0,x2]0xtf(x2t2)dt=21x20f(u)du=210x2f(u)dudxd0xtf(x2t2)dt=xf(x2)
注:

  • 做变上限函数求导,f(u),u必须是关于积分变量的整体变化式。

例10 设
f ( x ) = { 2 x , x ≥ 0 1 + x 1 − x , x < 0 f(x)= \begin{cases} 2x,\quad x\ge0\\ \frac{1+x}{1-x},\quad x\lt 0\\ \end{cases} f(x)={2x,x01x1+x,x<0
∫ 0 2 f ( x − 1 ) d x \int_0^2f(x-1)dx 02f(x1)dx
解: ∫ 0 2 f ( x − 1 ) d x = ∫ − 1 1 f ( x ) d x = ∫ − 1 0 f ( x ) d x + ∫ 0 1 f ( x ) d x = ∫ − 1 0 1 + x 1 − x d x + ∫ 0 1 ( 2 x ) d x = 2 ln ⁡ 2 − 1 + 1 = 2 ln ⁡ 2 解:\int_0^2f(x-1)dx=\int_{-1}^1f(x)dx=\int_{-1}^0f(x)dx+\int_0^1f(x)dx\\ =\int_{-1}^0\frac{1+x}{1-x}dx+\int_0^1(2x)dx=2\ln2-1+1=2\ln2 解:02f(x1)dx=11f(x)dx=10f(x)dx+01f(x)dx=101x1+xdx+01(2x)dx=2ln21+1=2ln2
例11 设 f ( x ) 在 ( − ∞ , + ∞ ) f(x)在(-\infty,+\infty) f(x)(,+)上连续,且满足: ∫ 0 x t f ( x − t ) d t = e x − x − 1 求 f ( x ) \int_0^xtf(x-t)dt=e^x-x-1求f(x) 0xtf(xt)dt=exx1f(x),

分析:

  • 等式左边是关于x积分上限函数,右侧是一个表达式,需要对积分上限函数求导

解:等式两边对 x 求导 等式左侧求导, d d x ∫ 0 x t f ( x − t ) d t , 令 x − t = u , d t = − d u d d x ∫ x 0 − ( x − u ) f ( u ) d u = d d x ∫ 0 x [ x f ( u ) − u f ( u ) ] d u = ∫ 0 x f ( u ) d u ( 1 − 1 ) 等式右侧求导, ( e x − x − 1 ) ′ = e x − 1 ,即 ∫ 0 x f ( u ) d u = e x − 1 , 等式两边继续对 x 求导,得 d d x ∫ 0 x f ( u ) d u = ( e x − 1 ) ′ f ( x ) = e x , x ∈ ( − ∞ , + ∞ ) 解:等式两边对x求导\\ 等式左侧求导,\frac{d}{dx}\int_0^xtf(x-t)dt,令x-t=u,dt=-du\\ \frac{d}{dx}\int_x^0-(x-u)f(u)du=\frac{d}{dx}\int_0^x[xf(u)-uf(u)]du\\ =\int_0^xf(u)du \quad (1-1)\\ 等式右侧求导,(e^x-x-1)^{'}=e^x-1,即\\ \int_0^xf(u)du=e^x-1,等式两边继续对x求导,得\\ \frac{d}{dx}\int_0^xf(u)du=(e^x-1)^{'}\\ f(x)=e^x,\quad x\in(-\infty,+\infty) 解:等式两边对x求导等式左侧求导,dxd0xtf(xt)dt,xt=u,dt=dudxdx0(xu)f(u)du=dxd0x[xf(u)uf(u)]du=0xf(u)du(11)等式右侧求导,(exx1)=ex1,即0xf(u)du=ex1,等式两边继续对x求导,得dxd0xf(u)du=(ex1)f(x)=ex,x(,+)

2 定积分的分部积分法

定理 设 f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]上连续,则

∫ a b u d v = [ u v ] ∣ a b + ∫ a b v d u \int_a^budv=[uv]|_a^b+\int_a^bvdu abudv=[uv]ab+abvdu

上式称为定积分的分部积分公式。

例12 求 ∫ 0 1 x e x d x \int_0^1xe^xdx 01xexdx
解: ∫ 0 1 x e x d x = ∫ 0 1 x d e x = ( x e x ) ∣ 0 1 − ∫ 0 1 e x d x = e − ( e − 1 ) = 1 解:\int_0^1xe^xdx=\int_0^1xde^x=(xe^x)|_0^1-\int_0^1e^xdx\\ =e-(e-1)=1 解:01xexdx=01xdex=(xex)0101exdx=e(e1)=1
例13 求 ∫ 1 5 ln ⁡ x d x \int_1^5\ln xdx 15lnxdx
解: ∫ 1 5 ln ⁡ x d x = ( x ln ⁡ x ) ∣ 1 5 − ∫ 1 5 x d ( ln ⁡ x ) = 5 ln ⁡ 5 − 4 解:\int_1^5\ln xdx=(x\ln x)|_1^5-\int_1^5xd(\ln x)\\ =5\ln5-4 解:15lnxdx=(xlnx)1515xd(lnx)=5ln54
例14 求 ∫ 1 e ln ⁡ x x 3 d x \int_1^e\frac{\ln x}{x^3}dx 1ex3lnxdx
解: ∫ 1 e ln ⁡ x x 3 d x = − 1 2 ∫ 1 e ln ⁡ x d ( x − 2 ) = − 1 2 ( x − 2 ln ⁡ x ) ∣ 1 e + 1 2 ∫ 1 e x − 2 d ( ln ⁡ x ) = − 3 4 e 2 + 1 4 解:\int_1^e\frac{\ln x}{x^3}dx=-\frac{1}{2}\int_1^e\ln xd(x^{-2})\\ =-\frac{1}{2}(x^{-2}\ln x)|_1^e+\frac{1}{2}\int_1^ex^{-2}d(\ln x)\\ =-\frac{3}{4e^2}+\frac{1}{4} 解:1ex3lnxdx=211elnxd(x2)=21(x2lnx)1e+211ex2d(lnx)=4e23+41
例15 求 ∫ 0 1 e x d x \int_0^1e^{\sqrt{x}}dx 01ex dx
解: ∫ 0 1 e x d x = x = t 2 ∫ 0 1 t e t d t = 2 解:\int_0^1e^{\sqrt{x}}dx\overset{\sqrt{x}=t}=2\int_0^1te^tdt\\ =2 解:01ex dx=x =t201tetdt=2
例16 求 ∫ 0 3 arcsin ⁡ x 1 + x d x \int_0^3\arcsin\sqrt\frac{x}{1+x}dx 03arcsin1+xx dx
解:令 t = arcsin ⁡ x 1 + x , x = tan ⁡ 2 x ∫ 0 3 arcsin ⁡ x 1 + x d x = ∫ 0 π 3 t d ( tan ⁡ 2 t ) = t tan ⁡ 2 t ∣ 0 π 3 − ∫ 0 π 3 ( s e c 2 t − 1 ) d t = π − 3 + π 3 = 4 3 π − 3 解:令t=\arcsin\sqrt\frac{x}{1+x},x=\tan^2x\\ \int_0^3\arcsin\sqrt\frac{x}{1+x}dx=\int_0^\frac{\pi}{3}td(\tan^2t)\\ =t\tan^2t|_0^\frac{\pi}{3}-\int_0^\frac{\pi}{3}(sec^2t-1)dt\\ =\pi-\sqrt{3}+\frac{\pi}{3}=\frac{4}{3}\pi-\sqrt{3} 解:令t=arcsin1+xx ,x=tan2x03arcsin1+xx dx=03πtd(tan2t)=ttan2t03π03π(sec2t1)dt=π3 +3π=34π3

例17 求 ∫ 1 e sin ⁡ ( ln ⁡ x ) d x \int_1^e\sin(\ln x)dx 1esin(lnx)dx
解:令 ln ⁡ x = t , x = e t ∫ 1 e sin ⁡ ( ln ⁡ x ) d x = ∫ 0 1 sin ⁡ t d ( e t ) = sin ⁡ t e t ∣ 0 1 + ∫ 0 1 cos ⁡ t e t d t = e sin ⁡ 1 − e cos ⁡ 1 + 1 − ∫ 0 1 sin ⁡ t e t d t 原式 = 1 2 e sin ⁡ 1 − 1 2 e cos ⁡ 1 + 1 2 解:令\ln x=t,x=e^t\\ \int_1^e\sin(\ln x)dx=\int_0^1\sin td(e^t)=\sin te^t|_0^1+\int_0^1\cos te^tdt\\ =e\sin1-e\cos1+1-\int_0^1\sin te^tdt\\ 原式=\frac{1}{2}e\sin1-\frac{1}{2}e\cos1+\frac{1}{2} 解:令lnx=t,x=et1esin(lnx)dx=01sintd(et)=sintet01+01costetdt=esin1ecos1+101sintetdt原式=21esin121ecos1+21
例18 计算 I = ∫ 0 1 f ( x ) x d x , 其中 f ( x ) = ∫ 1 x e − t 2 d t I=\int_0^1\frac{f(x)}{\sqrt{x}}dx,其中f(x)=\int_1^{\sqrt{x}}e^{-t^2}dt I=01x f(x)dx,其中f(x)=1x et2dt
解: ∫ 0 1 f ( x ) x d x = 2 ∫ 0 1 f ( x ) d ( x ) = 2 ( x f ( x ) ∣ 0 1 ) − 2 ∫ 0 1 x f ′ ( x ) d x = − 2 ∫ 0 1 x f ′ ( x ) d x f ′ ( x ) = d d x ∫ 1 x e − t 2 d t = 1 2 x e x I = − 2 ∫ 0 1 x ⋅ 1 2 x e x d x = 1 e x ∣ 0 1 = 1 e − 1 解:\int_0^1\frac{f(x)}{\sqrt{x}}dx=2\int_0^1f(x)d(\sqrt{x})\\ =2(\sqrt{x}f(x)|_0^1)-2\int_0^1\sqrt{x}f^{'}(x)dx=-2\int_0^1\sqrt{x}f^{'}(x)dx\\ f^{'}(x)=\frac{d}{dx}\int_1^{\sqrt{x}}e^{-t^2}dt=\frac{1}{2\sqrt{x}e^x}\\ I=-2\int_0^1\sqrt{x}\cdot\frac{1}{2\sqrt{x}e^x}dx=\frac{1}{e^x}|_0^1=\frac{1}{e}-1 解:01x f(x)dx=201f(x)d(x )=2(x f(x)01)201x f(x)dx=201x f(x)dxf(x)=dxd1x et2dt=2x ex1I=201x 2x ex1dx=ex101=e11
例19 计算 I n = ∫ 0 π 2 sin ⁡ n x d x ( n ∈ N ) I_n=\int_0^\frac{\pi}{2}\sin^nxdx \quad(n\in N) In=02πsinnxdx(nN)
解: I n = ∫ 0 π 2 sin ⁡ n x d x = − ∫ 0 π 2 sin ⁡ n − 1 x d ( cos ⁡ x ) = ( n − 1 ) ∫ 0 π 2 ( 1 − sin ⁡ 2 x ) sin ⁡ n − 2 x d x I n = n − 1 n I n − 2 I 0 = π 2 , I 1 = 1 因此 I 2 m = 2 m − 1 2 m ⋅ 2 m − 3 2 m − 2 ⋯ 1 2 ⋅ π 2 = ( 2 m − 1 ) ! ! ( 2 m ) ! ! I 2 m + 1 = 2 m 2 m + 1 ⋅ 2 m 2 m − 1 ⋯ 2 3 = ( 2 m ) ! ! ( 2 m + 1 ) ! ! ( m = 1 , 2 , ⋯   ) 解:I_n=\int_0^\frac{\pi}{2}\sin^nxdx=-\int_0^\frac{\pi}{2}\sin^{n-1}xd(\cos x)\\ =(n-1)\int_0^\frac{\pi}{2}(1-\sin^2x)\sin^{n-2}xdx\\ I_n=\frac{n-1}{n}I_{n-2}\\ I_0=\frac{\pi}{2},I_1=1\\ 因此I_{2m}=\frac{2m-1}{2m}\cdot\frac{2m-3}{2m-2}\cdots\frac{1}{2}\cdot\frac{\pi}{2}=\frac{(2m-1)!!}{(2m)!!}\\ I_{2m+1}=\frac{2m}{2m+1}\cdot\frac{2m}{2m-1}\cdots\frac{2}{3}=\frac{(2m)!!}{(2m+1)!!}\quad(m=1,2,\cdots) 解:In=02πsinnxdx=02πsinn1xd(cosx)=(n1)02π(1sin2x)sinn2xdxIn=nn1In2I0=2π,I1=1因此I2m=2m2m12m22m3212π=(2m)!!(2m1)!!I2m+1=2m+12m2m12m32=(2m+1)!!(2m)!!(m=1,2,)
∫ 0 π 2 sin ⁡ 6 x d x = 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 5 32 \int_0^\frac{\pi}{2}\sin^6xdx=\frac{5}{6}\cdot\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{\pi}{2}=\frac{5}{32} 02πsin6xdx=6543212π=325

∫ 0 π 2 cos ⁡ 5 x d x = 4 ! ! 5 ! ! = 8 15 \int_0^\frac{\pi}{2}\cos^5xdx=\frac{4!!}{5!!}=\frac{8}{15} 02πcos5xdx=5!!4!!=158

例20 求 ∫ 0 π cos ⁡ 5 x 2 d x \int_0^\pi\cos^5\frac{x}{2}dx 0πcos52xdx
解:令 t = x 2 ∫ 0 π cos ⁡ 5 x 2 d x = 2 ∫ 0 π 2 c o s 5 t d t = 16 15 解:令t=\frac{x}{2}\\ \int_0^\pi\cos^5\frac{x}{2}dx=2\int_0^\frac{\pi}{2}cos^5tdt=\frac{16}{15} 解:令t=2x0πcos52xdx=202πcos5tdt=1516

后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.p246-254.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p34.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值