数学分析:换元积分法与分部积分法

8.2 换元积分法与分布积分法

一、换元积分法

定理 4:(第一类换元积分法)
\quad 设函数 f ( x ) f(x) f(x) 在区间 I I I 上有定义, φ ( x ) \varphi(x) φ(x) 在区间 J J J 上可导,且 φ ( J ) ⊂ I \varphi(J) \subset I φ(J)I. 若不定积分 ∫ f ( x ) d x = F ( x ) + C \int f(x) dx = F(x)+C f(x)dx=F(x)+C 在区间 I I I 上存在,则不定积分 ∫ f ( φ ( t ) ) φ ′ ( t ) d t \int f(\varphi(t))\varphi'(t)dt f(φ(t))φ(t)dt 在区间 J J J 上也存在,且满足:
∫ f ( φ ( t ) ) φ ( t ) d t = F ( φ ( t ) ) + C , t ∈ J , C 为任意常数 . \int f(\varphi(t)) \varphi(t)dt = F(\varphi(t)) + C,\quad t \in J,C \text{为任意常数}. f(φ(t))φ(t)dt=F(φ(t))+C,tJ,C为任意常数.

证明:

\quad 易知, F ( x ) F(x) F(x) 在区间 I I I 上可导, φ ( t ) \varphi(t) φ(t) 在区间 J J J 上可导,且 φ ( J ) ⊂ I \varphi(J) \subset I φ(J)I. 由复合函数的求导法则可得:
导数形式: [ F ( φ ( t ) ) ] ′ = F ′ ( φ ( t ) ) ⋅ φ ′ ( t ) = f ( φ ( t ) ) φ ′ ( t ) , t ∈ J 微分形式: d F ( φ ( t ) ) = f ( φ ( t ) ) φ ′ ( t ) d t , t ∈ J \begin{aligned} \text{导数形式:}[F(\varphi(t))]' &= F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi'(t) ,\quad t \in J \\ \\ \text{微分形式:}dF(\varphi(t)) &= f(\varphi(t))\varphi'(t)dt,\quad t \in J \end{aligned} 导数形式:[F(φ(t))]微分形式:dF(φ(t))=F(φ(t))φ(t)=f(φ(t))φ(t),tJ=f(φ(t))φ(t)dt,tJ
因此, F ( φ ( t ) ) F(\varphi(t)) F(φ(t)) f ( φ ( t ) ) φ ′ ( t ) f(\varphi(t))\varphi'(t) f(φ(t))φ(t) 在区间 J J J 上的一个原函数,由原函数的性质,定理得证。

证毕

注意:由于 d F ( x ) = f ( x ) d x dF(x) =f(x)dx dF(x)=f(x)dx d φ ( t ) = φ ′ ( t ) d t d\varphi(t) = \varphi'(t)dt dφ(t)=φ(t)dt,于是:
∫ f ( φ ( t ) ) φ ′ ( t ) d t = φ ( t ) = x ∫ f ( x ) d x = F ( x ) + C = x = φ ( t ) F ( φ ( t ) ) + C \int f(\varphi(t))\varphi'(t)dt \xlongequal{\varphi \left( t \right) = x} \int f(x) dx = F(x) + C \xlongequal{x = \varphi(t)} F(\varphi(t)) + C f(φ(t))φ(t)dtφ(t)=x f(x)dx=F(x)+Cx=φ(t) F(φ(t))+C
因此,第一类换元积分法 又称为 “凑微分法”.

定理5:(第二类换元积分法)
\quad 设函数 f ( x ) f(x) f(x) 在区间 I I I 上有定义,函数 φ ( t ) \varphi(t) φ(t) 在区间 J J J 上可导、 φ ( J ) ⊂ I \varphi(J) \subset I φ(J)I,且 x = φ ( t ) x = \varphi(t) x=φ(t) 在区间 J J J 上存在反函数 t = φ − 1 ( x ) , x ∈ I t = \varphi^{-1}(x),x \in I t=φ1(x),xI. 则若不定积分 ∫ f ( x ) d x = F ( x ) + C \int f(x) dx = F(x)+C f(x)dx=F(x)+C 在区间 I I I 上存在、不定积分 ∫ f ( φ ( t ) ) φ ′ ( t ) d t = G ( t ) + C \int f(\varphi(t))\varphi'(t)dt=G(t) + C f(φ(t))φ(t)dt=G(t)+C 在区间 J J J 上也存在时,不定积分
∫ f ( x ) d x = G ( φ − 1 ( x ) ) + C \int f(x)dx = G(\varphi^{-1}(x)) + C f(x)dx=G(φ1(x))+C
在区间 I I I 上同样存在.
证明:
\quad 由复合函数的求导法则可得:
[ F ( φ ( t ) ) ] ′ = F ′ ( φ ( t ) ) ⋅ φ ′ ( t ) = f ( φ ( t ) ) φ ′ ( t ) , t ∈ J [F(\varphi(t))]' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi'(t) ,\quad t \in J [F(φ(t))]=F(φ(t))φ(t)=f(φ(t))φ(t),tJ
显然,函数 F ( φ ( t ) ) F(\varphi(t)) F(φ(t)) G ( t ) G(t) G(t) 均是函数 f ( φ ( t ) ) f(\varphi(t)) f(φ(t)) 在区间 J J J 上的原函数.
\quad 由原函数的性质,存在常数 C 1 C_1 C1 使得:
F ( φ ( t ) ) = G ( t ) + C 1 F(\varphi(t)) = G(t) + C_1 F(φ(t))=G(t)+C1
从而有:
F ( x ) = G ( φ − 1 ( x ) ) + C 1 F(x) = G(\varphi^{-1}(x)) + C_1 F(x)=G(φ1(x))+C1
等式两边同时对 x x x 求导,则有:
f ( x ) = [ G ( φ − 1 ( x ) ) ] ′ f(x) = [G(\varphi^{-1}(x))]' f(x)=[G(φ1(x))]
因此,函数 [ G ( φ − 1 ( x ) ) ] [G(\varphi^{-1}(x))] [G(φ1(x))] 也是函数 f ( x ) f(x) f(x) 在区间 I I I 上的一个原函数,即有:
∫ f ( x ) d x = G ( φ − 1 ( x ) ) + C . \int f(x)dx = G(\varphi^{-1}(x)) + C. f(x)dx=G(φ1(x))+C.

证毕

注意

(1)在定理条件成立的情况下,有
∫ f ( x ) d x = x = φ ( t ) ∫ f ( φ ( t ) ) φ ′ ( t ) d t = G ( t ) + c = t = φ − 1 ( x ) G ( φ − 1 ( x ) ) + C . \int f(x)dx \xlongequal{x = \varphi(t)} \int f(\varphi(t))\varphi'(t)dt=G(t) + c \xlongequal{t = \varphi^{-1}(x)} G(\varphi^{-1}(x)) + C. f(x)dxx=φ(t) f(φ(t))φ(t)dt=G(t)+ct=φ1(x) G(φ1(x))+C.
因此,第二类换元积分法 又称为 代入换元法.
(2)定理条件中的 “ ∫ f ( x ) d x = F ( x ) + C \int f(x) dx =F(x) + C f(x)dx=F(x)+C 在区间 I I I 上存在” 是 必不可少 的!
示例: f ( x ) = { 1 , x    ∈ ( 0 , 8 ] 0 , x = 0 f\left( x \right) =\begin{cases}\begin{matrix}1,& x\,\,\in \left( 0,8 \right]\\\end{matrix}\\\begin{matrix}0,& x=0\\\end{matrix}\\\end{cases} f(x)={1,x(0,8]0,x=0,显然,函数 x = t 3 , t ∈ [ 0 , 2 ] x=t^3,t \in [0,2] x=t3,t[0,2] 在区间 [ 0 , 2 ] [0,2] [0,2] 上存在反函数,并且在区间 ( 0 , 2 ] (0,2] (0,2] 上成立:
∫ f ( t 3 ) ⋅ ( t 3 ) ′ d t = ∫ 3 t 2 d t = t 3 + C \int f(t^3)\cdot (t^3)'dt = \int 3t^2 dt = t^3 + C f(t3)(t3)dt=3t2dt=t3+C
t = 0 t=0 t=0 时,成立: ( t 3 + C ) ′ ∣ t = 0 = ( f ( t 3 ) ⋅ t 3 ) ∣ t = 0 (t^3+C)' |_{t=0} = (f(t^3)\cdot t^3)|_{t=0} (t3+C)t=0=(f(t3)t3)t=0,因此在区间 [ 0 , 2 ] [0,2] [0,2] 上成立:
∫ f ( t 3 ) ⋅ ( t 3 ) ′ d t = ∫ 3 t 2 d t = t 3 + C \int f(t^3)\cdot (t^3)'dt = \int 3t^2 dt = t^3 + C f(t3)(t3)dt=3t2dt=t3+C
但显然,函数 f ( x ) f(x) f(x) 在 区间 [ 0 , 8 ] [0,8] [0,8] 上有第一类间断点 0 0 0,因此没有原函数.
(3)通过 (2)可以看出,理条件中的 “ ∫ f ( x ) d x = F ( x ) + C \int f(x) dx =F(x) + C f(x)dx=F(x)+C 在区间 I I I 上存在” 必不可少,这样一来,定理挺长的,我们可以通过增强定理条件,对其进行简化:
(增强版的第二类换元积分法):
\quad 设函数 f ( x ) f(x) f(x) 在区间 I I I 上有定义,函数 φ ( t ) \varphi(t) φ(t) 在区间 J J J 上可导、 φ ( J ) ⊂ I \varphi(J) \subset I φ(J)I,且 x = φ ( t ) x = \varphi(t) x=φ(t) 在区间 J J J 上存在可导的反函数 t = φ − 1 ( x ) , x ∈ I t = \varphi^{-1}(x),x \in I t=φ1(x),xI. 则不定积分 ∫ f ( φ ( t ) ) φ ′ ( t ) d t = G ( t ) + C \int f(\varphi(t))\varphi'(t)dt=G(t) + C f(φ(t))φ(t)dt=G(t)+C 在区间 J J J 上存在时,不定积分
∫ f ( x ) d x = G ( φ − 1 ( x ) ) + C \int f(x)dx = G(\varphi^{-1}(x)) + C f(x)dx=G(φ1(x))+C
在区间 I I I 上也存在.
证明:
\quad 由反函数求导定理及复合函数求导定理,此时:
d d x G ( φ − 1 ( x ) ) = G ′ ( φ − 1 ( x ) ) ⋅ [ φ − 1 ( x ) ] ′ = f ( φ ( t ) ) φ ′ ( t ) ⋅ 1 φ ( t ) = f ( φ ( t ) ) = f ( x ) \frac{d}{dx}G(\varphi^{-1}(x)) = G'(\varphi^{-1}(x))\cdot [\varphi^{-1}(x)]' = f(\varphi(t))\varphi'(t)\cdot \frac{1}{\varphi(t)} = f(\varphi(t))=f(x) dxdG(φ1(x))=G(φ1(x))[φ1(x)]=f(φ(t))φ(t)φ(t)1=f(φ(t))=f(x)
因此, G ( φ − 1 ( x ) ) G(\varphi^{-1}(x)) G(φ1(x)) 是函数 f ( x ) f(x) f(x) 在区间 I I I 上的一个原函数,即:
∫ f ( x ) d x = G ( φ − 1 ( x ) ) + C \int f(x)dx = G(\varphi^{-1}(x)) + C f(x)dx=G(φ1(x))+C

证毕

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值