定积分的计算(换元法)

前置知识


定积分换元法

f f f [ a , b ] [a,b] [a,b]上连续, φ \varphi φ [ α , β ] [\alpha,\beta] [α,β]上可导且导数连续, x = φ ( t ) x=\varphi(t) x=φ(t) [ α , β ] [ \alpha,\beta] [α,β]上的值域包含于 [ a , b ] [a,b] [a,b],且 φ ( α ) = a , φ ( β ) = b \varphi(\alpha)=a,\varphi(\beta)=b φ(α)=a,φ(β)=b,则

∫ a b f ( x ) d x = ∫ α β f ( φ ( t ) ) φ ′ ( t ) d t \int_a^bf(x)dx=\int_{\alpha}^{\beta}f(\varphi(t))\varphi'(t)dt abf(x)dx=αβf(φ(t))φ(t)dt

证明: 因为 f f f [ a , b ] [a,b] [a,b]上连续,所以 f f f [ a , b ] [a,b] [a,b]上有原函数 F ( x ) F(x) F(x),而 F ( φ ( t ) ) F(\varphi(t)) F(φ(t)) f ( φ ( t ) ) φ ′ ( t ) f(\varphi(t))\varphi'(t) f(φ(t))φ(t)的原函数,由此可得

∫ α β f ( φ ( t ) ) φ ′ ( t ) d t = F ( φ ( t ) ) ∣ α β = F ( x ) ∣ a b = ∫ a b f ( x ) d x \int_{\alpha}^{\beta}f(\varphi(t))\varphi'(t)dt=F(\varphi(t))\bigg\vert_{\alpha}^{\beta}=F(x)\bigg\vert_a^b=\int_a^bf(x)dx αβf(φ(t))φ(t)dt=F(φ(t)) αβ=F(x) ab=abf(x)dx


例题1

计算 ∫ 0 1 ( 2 x + 1 ) 2 d x \int_0^1(2x+1)^2dx 01(2x+1)2dx

解:原式 = 1 2 ∫ 0 1 ( 2 x + 1 ) 2 d ( 2 x + 1 ) = 1 6 ( 2 x + 1 ) 3 ∣ 0 1 = 13 3 =\dfrac 12\int_0^1(2x+1)^2d(2x+1)=\dfrac 16(2x+1)^3\bigg\vert_0^1=\dfrac{13}{3} =2101(2x+1)2d(2x+1)=61(2x+1)3 01=313


例题2

计算 ∫ 1 e 1 x ( 1 + ln ⁡ x ) d x \int_1^e\dfrac{1}{x(1+\ln x)}dx 1ex(1+lnx)1dx

解:原式 = ∫ 1 e 1 1 + ln ⁡ x d ( 1 + ln ⁡ x ) = ln ⁡ ∣ 1 + ln ⁡ x ∣ ∣ 1 e = ln ⁡ 2 =\int_1^e\dfrac{1}{1+\ln x}d(1+\ln x)=\ln|1+\ln x|\bigg\vert_1^e=\ln 2 =1e1+lnx1d(1+lnx)=ln∣1+lnx 1e=ln2

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值