【ACMMM2024】Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection

image-20240828125350015

论文:https://arxiv.org/pdf/2408.04326

代码:https://github.com/BellyBeauty/MDSAM

论文的研究动机就是使用SAM来解决显著性检测(SOD)问题,主要有两个改进:

  • 提出了Lightweight Multi-Scale Adapter, LMSA来微调SAM
  • 提出了Multi-Level Fusion Module, MLFM 和 Detail Enhancement Module, DEM,分别改善了SAM在多尺度和细粒度感知方面的性能。

网络的整体架构如下图所示,关键模块是标红的部分,下面分别进行介绍。

image-20240828125505493

1、Lightweight Multi-Scale Adapter,LMSA

作者认为,SAM编码器的参数过多,同时 SOD训练数据不足会影响网络的全面微调,因此,使用Adaptor可以让SAM应用于SOD,同时,应用多尺度特征提取能够提升性能。LMSA结构如下图所示,本质上就是在 Adpator 里把特征池化成多个尺度分别处理。

image-20240828125901677

2、Multi-Level Fusion Module, MLFM

在 SAM 的 encoder 中,每一层都包含不同的信息,因此多层信息融合对于 SOD 来说是必要的。如下图所示,作者提出的 MLFM 使用 Weight Distributors(WD)生成 weight 并将它们分配给不同的层。

image-20240828130235507

3、Detail Enhancement Module, DEM

为了增强边缘细节信息,作者又提出了DEM,具体结构如下图所示。包含一个主分支和一个辅助分支。下图中下面是主分支,输入分别是VIT的特征 F d F^d Fd 和 SAM 中 decoder 生成的 mask F m F^m Fm。上面是辅助分支的输入是原始图像,本质是通过不断池化,和输入做差的方式得到 edge enhancement,得到的结果再和主分支进行特征拼接。

image-20240828130429468

实验部分可以参考作者论文,这里不过多介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值