无监督学习之t-SNE

http://www.datakit.cn/blog/2017/02/05/t_sne_full.html

一、Visualizing Data using t-SNE

  • 论文链接:http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
  • t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来。此外,t-SNE 是一种非线性降维算法,非常适用于高维数据降维到2维或者3维,进行可视化。相对于PCA来说,t-SNE可以说是一种更高级有效的方法,在第二部分我们会展示t-SNE和PCA在手写数字体上的效果对比。
  • 原理简述:t-SNE是一种降维算法,目的就是把X(原始高维数据)转换成Z(指定低维度的数据)。t-SNE首先将距离转换为条件概率来表达点与点之间的相似度,距离通过欧式距离算得,S( x^i , x^j )表示求 x^i,x^j 之间的欧式距离。计算原始高维数据X与转换后的低维数据Z的公式如下所示。

 

计算完X数据之间的的概率P( x^j|x^i )和Z数据之间的概率Q( z^j | z^i )之后,接下来就是我们 的目的就是P和Q连个分布尽可能的接近,也就是要是如下公式的KL散度尽可能小。

sklearn中已有现成的TSNE,下面我们来比较一下t-SNE与PCA的效果。

二、简单示例

from sklearn.manifold import TSNE
from sklearn.datasets import load_iris,load_digits
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import os

digits = load_digits()
X_tsne = TSNE(n_components=2,random_state=33).fit_transform(digits.data)
X_pca = PCA(n_components=2).fit_transform(digits.data)

ckpt_dir="images"
if not os.path.exists(ckpt_dir):
    os.makedirs(ckpt_dir)

plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=digits.target,label="t-SNE")
plt.legend()
plt.subplot(122)
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=digits.target,label="PCA")
plt.legend()
plt.savefig('images/digits_tsne-pca.png', dpi=120)
plt.show()

从结果可以看出PCA降到二维后基本混到一起来,很难进行区分。而t-SNE的效果非常的不错。

 

三、参考资料

  1. t-SNE完整笔记
  2. A tutorial on the t-SNE learning algorithm
  3. 线性判别(LDA)与主成分分析(PCA)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值