【域适应之遥感滑坡检测】学习笔记2
【域适应之遥感滑坡检测】学习笔记2
文章目录
前言
域适应方法通过缩小源领域(A区域)与目标领域(B区域)的分布差异,帮助我们将已有标签的源领域模型迁移到未标注或少量标注的目标领域,提升模型在目标领域的泛化能力。以下是域适应中的四种主要方法的详细论述及其代码实现,以已知A区域的滑坡标签实现B区域的滑坡检测为例。
1. 实例重加权方法
1.1 方法概述
实例重加权(Instance Re-weighting)方法的核心思想是给源领域数据中的样本分配不同的权重,使得它们的特征分布更接近目标领域的特征分布。这样,模型在训练时更加关注那些与目标领域特征接近的源领域样本,从而提高目标领域的性能。
常见的实现方式是使用概率密度估计或最大均值差异(MMD)来衡量源领域与目标领域之间的分布差异,然后为每个源领域样本分配一个权重,使得经过加权后的源领域样本分布与目标领域更加匹配。