《人工智能》工程师:最大熵和EM算法

最大熵

信息:i(x) = -log(p(x)) 

概率p是对确定性的度量,那么信息就是对不确定性的度量。

熵:

是对随机事件平均不确定性的度量。H(X) = -1*np.sum(p(x)*np.log(p(x))

平均互信息:信息增益

I(X;Y) = np.sum(P(x,y)*(np.log(P(x,y)/P(x)P(y)))

最大熵模型

熵最大的事物,最可能接近它的真实状态。

熵最大的模型就是最好的模型。

最大熵模型进行机器学习
条件熵:

H(y|x) = -1 * (np.sum( P(y,x) * (np.log(P(y|x))) 第一个是联合概率,第二个是条件概率。

目的是要找出条件熵,P*表示理想概率。

200




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值