最大熵
信息:i(x) = -log(p(x))
概率p是对确定性的度量,那么信息就是对不确定性的度量。
熵:
是对随机事件平均不确定性的度量。H(X) = -1*np.sum(p(x)*np.log(p(x))
平均互信息:信息增益
I(X;Y) = np.sum(P(x,y)*(np.log(P(x,y)/P(x)P(y)))
最大熵模型
熵最大的事物,最可能接近它的真实状态。
熵最大的模型就是最好的模型。
最大熵模型进行机器学习
条件熵:
H(y|x) = -1 * (np.sum( P(y,x) * (np.log(P(y|x))) 第一个是联合概率,第二个是条件概率。
目的是要找出条件熵,P*表示理想概率。