用神经网络实现权重的叠加

前面得到的权重分布规则

按列分布,正负对称,

A0列或B0列高度比较突出,且A0列或B0列彼此之间正负关系相反

重合1列的高度较小,重合0列没有变化

如果用神经网络分类0-k的A和B,按照权重规则知道,一定是第0列比较突出,而第1,2,3相对不明显。并且正负对称。

同样如果分类1-k,可以知道一定是第1列权重比较突出,第0,2,3列相对不明显。

但如果分类

(AB, C)---4*5*2---(1, 0)(0, 1)

一个测试集中有A和B两张图片,另一个测试集中只有一张图片C.用神经网络分类AB和C,在相同收敛误差下得到的权重是什么样的?

可以看到是第0,1列比较突出,按照移位假设,对这个网络当用A和C训练时相当于完成了由A和C之间的相互移位,当用B和C训练时相当于完成了由B和C之间的相互的移位。因此对网络(AB, C)---4*5*2---(1, 0)(0, 1),事实上相当于同时完成了A和C与B和C的相互移位。

所以此时的网络的权重是

(A, C)---4*5*2---(1, 0)(0, 1)

(B, C)---4*5*2---(1, 0)(0, 1)

两种状态的叠加态,这可以解释为什么(AB, C)---4*5*2---(1, 0)(0, 1)的收敛权重看起来像

(A, C)---4*5*2---(1, 0)(0, 1)

(B, C)---4*5*2---(1, 0)(0, 1)

两个网络收敛权重的组合。

现在再用网络分类01-k,可以推测收敛权重一定是第0,1列比较突出。

现在分类

(AB, C)---4*5*2---(1, 0)(0, 1)

这依然是一个二分类网络,只不过一个训练集有两张图片A和B,另一个训练集只有一张图片C。

这个网络的收敛权重

这个图片中只有第0列比较明显,而第1列甚至还没有第2,3列突出。

A

B

C

1

0

0

1

2

0

1

1

3

1

1

1

当C全是1的情况下,权重只有3种可能。0-1-k的情况只有第2和第3种权重,第0,1列是第2种权重,第2,3列是第3种权重。而01-0-k的情况有全部的3种权重,第0列是第1种权重,第1列是第2种权重,而第2,3列是第3种权重。

因此权重种类和数量的不同使得两个网络产生了不同的叠加规则,合理猜测权重种类和数量的不同也导致了两个网络迭代次数的差异。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值