PCA和KPCA傻傻分不清楚?戳进来教你如何区分

本文介绍了PCA的降维原理及其局限性,指出线性降维可能无法应对复杂的数据结构。接着引入核方法,通过KPCA(核主成分分析)解决非线性问题,解释了KPCA是如何通过非线性变换找到数据的低维表示。KPCA与PCA的主要区别在于,KPCA能在低维空间利用核函数模拟高维空间的非线性映射。
摘要由CSDN通过智能技术生成

在格创东智之前的文章中,我们讨论了特征抽取的经典算法——主成分分析PCA与线性判别分析LDA的原理与应用场景。PCA是一种无监督的降维方法,寻找的是让数据方差最大的一种映射;LDA是一种有监督的降维方法,寻找的是让数据分类效果最好的一种映射。但是它们仍然有应用的局限性,今天我们就一起来了解下。

PCA的局限性
我们先来回顾一下PCA的降维原理:PCA试图通过旋转找到新的正交基,满足这样的两条性质:
1、最近重构性:样本点到新映射的正交基距离足够接近。
2、最大可分性:样本点在新正交基上方差最大。
最后我们推导得到:
在这里插入图片描述
我们只需要对协方差矩阵XX^T 进行特征值分解,得到的特征值和特征向量即是变换矩阵w的解和改主成分所解释的方差量。这样的降维方法是线性的降维方法,即从高维空间到低维空间的函数映射是线性的。然而在不少应用场景中,线性映射可能不能得到想要的结果,例如如下的例子:S型曲线的本真二维结构是其低维空间的原本形状,通过线性降维后得到的结果明显并不是我们所期望的。
在这里插入图片描述

核方法
我们介绍SVM的时候所介绍的核方法是一种可以进行升维来生成一些非线性的映射。这个方法我们可以同样使用在PCA降维分析中。

假设我们有一个样本集:
x1,x2⋯xn
假设映射函数为,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值