点云从入门到精通技术详解100篇-雨雾环境下多传感器融合SLAM方法

本文详细介绍了雨雾环境下多传感器融合SLAM方法,探讨了传统SLAM、视觉SLAM、激光雷达SLAM以及多传感器融合SLAM的研究现状,强调了在雨雾环境下SLAM定位的挑战。文章阐述了多传感器融合SLAM的整体框架,包括暗通道先验图像除雾算法和点云滤波策略,并详细讨论了视觉IMU和激光雷达的联合标定过程。通过仿真结果和性能分析,证实了提出的雨雾环境下SLAM扰动抑制算法能有效提升定位精度和鲁棒性。
摘要由CSDN通过智能技术生成

目录

前言

国内外研究现状

传统SLAM研究现状 

多传感器融合SLAM研究现状

2 多传感器融合SLAM技术基础

2.1 整体框架

2.2 多传感器联合标定

2.2.1 视觉IMU联合标定

2.2.2 激光雷达视觉联合标定

2.3 IMU预积分

2.4 针孔相机模型

3 雨雾环境下SLAM扰动抑制算法

3.1 引言

3.2 雨雾环境扰动分析 

3.2.1雨雾环境对激光雷达的影响

3.2.2雨雾环境对相机的影响

3.3 基于暗通道先验的图像除雾算法

3.3.1大气光模型

3.3.2大气光估计

3.3.3传输率估计

3.3.4图像恢复

3.4点云层次化滤波算法 

3.4.1 半径滤波

3.5 仿真结果及性能分析

3.5.1 性能评价指标

3.5.2 仿真实验


本文篇幅较长,分为上下两篇,下篇详见雨雾环境下多传感器融合SLAM方法

 

前言

近年来,随着计算机芯片技术的进步,运算能力得到了极大的提升,为实现无人驾驶 车辆的智能化奠定了坚实的硬件基础。鉴于无人驾驶这一潜在的市场,国内外众多厂商纷 纷开展无人驾驶技术的研究。谷歌的第一个无人驾驶项目Waymo于2009年启动,历经 十多年,于2018年末发布了其第一个无人驾驶载客服务Waymo One,如图1.1。与此同 时,国内的高科技公司纷纷加入无人驾驶市场。百度率先开始了无人驾驶领域的发展,并 于2020年推出了名为“萝卜快跑”的无人驾驶交通服务平台。如图1.2。在面向用户的无 人驾驶领域

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值