自然指数函数e^x与欧拉数e (上)

自然指数函数e^x与欧拉数e

Part I: 什么是指数

 

根据维基百科中的定义:指数是一种运算(operation),他包含两个数,一个是底数/底/基数(base),另一个叫指数(exponent)/幂(power)。指数运算可以表示为如下方式:

\mathbf{b^{n}}

其中,b表示base,n表示exponent。在英文中念作“b to the power of n”,用中文中我们可以说“b的n次方”或“b的n次幂(这个有点官方了)”。指数运算所表示的意思是n个b相乘(当n为正整数时)。这样看来,指数运算并不是什么新东西,他只不过是多个同一个数相乘的一种简化表示。

例如:我们要表示10个2相乘,我们可以写成连乘的形式。但有了指数以后,我们就能用更加简洁的形式表示:

2\times2 \times 2\times2 \times 2\times2\times2 \times 2\times2 \times 2\Rightarrow 2^{10}

如果n为负呢?

若n为负,也就是负指数。表示连续除一个同一个数n次!换句话说,负指数就是正指数的倒数。

 \mathbf{b^{-n}=\frac{1}{b^{n}}}

例如:

8^{-1}=1/8

再比如:

8^{-3}=1/8/8/8   或   8^{-3}=1/(8*8*8)

n为有理数呢?

令n为有理数p/q,则有:

\mathbf{b^{n}=\mathbf{b^{p/q}}=\sqrt[q]{b^{p}}=(\sqrt[q]{b})^{p}}

 例如b的0.5次方:

b^{0.5}=b^{1/2}=\sqrt[2]{b^{1}}=\sqrt[2]{b}


Part II: 指数,根和对数

        下面我想用一例子来说明指数,根和对数的区别,其中每一个例子都会用一个"?"来替代我们所要说明的数。这样会更有助于我去理解指数。

\mathbf{b^{n}=a}

一:指数,exponent(乘积是多少?)

b^{n}=?

         这是关于指数的问题/几次方的问题,即b的n次方是多少?或n个b相乘等于多少?例如,3的平方是多少。

二:根,root(用哪个数乘?)

?^{n}=a

        这是求根的问题,即a的n次根是多少?或者说n个什么相乘等于a? 例如,2的平方根是多少?或4个什么相乘等于10000?

三:对数,logarithm(乘多少次?)

b^{?}=a

        这是关于对数的问题,即a以b为底的对数是多少?或者说b的几次方是a(个人更加倾向于这种说法)?例如,3的几次方等于9。


Part III: 指数函数

指数函数指的是下面这种函数:

f(x)=b^{x},\; where \; b\neq 0

定义域(Domain):全部实数,值域(Range):(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值