K-F数据降维模型

Kolmogorov Filter数据降维模型

Kolmogorov Filter方法[1](下面称K-f法)是基于Kolmogorov-Smirnov检验而提出。K-f法重点关注了两种条件下的分布函数存在较大差距的预测变量,这些变量的值对Y值的选取有较大的决定作用,故作为重要变量。
K-f方法是对二值响应变量的预测变量的筛选方法,且其预测变量的类型不做限制。具体步骤如下:
首先定义与分别是给定或条件下的分布函数(条件积累概率函数)
其次定义Kolmogorov系数为两分布函数差的上界的估计值分别是和的矩估计。
最后对所有预测变量的统计量进行降序排列,筛选较大的m个预测变量作为重要变量。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值