目录
一、具体应用例子
1.1 星系分类
- 应用背景:随着天文望远镜技术的发展,积累了大量的星系图像。手动对这些图像进行分类几乎是不现实的,因为这不仅耗时,而且容易出错。
- AI技术:深度卷积神经网络(CNN)特别适合处理图像数据。通过训练,CNN可以自动学习从原始像素到高级星系特征(如形状、大小、旋臂结构)的映射。
- 实施细节:天文学家首先会标记一小部分星系图像作为训练集。然后,他们使用这些标记数据来训练CNN模型。一旦模型训练完成,它就可以对新的、未标记的星系图像进行分类,速度远超过手动分类。
1.2 瞬态天体检测
- 应用背景:瞬态天体,如超新星和小行星,是天文学研究的重要目标。这些天体通常只在短时间内可见,因此及时发现它们至关重要。
- AI技术:差异成像和机器学习算法相结合是检测瞬态天体的有效方法。差异成像是通过比较不同时间点的天文图像来识别变化的技术。
- 实施细节:首先,算法会对齐并比较同