DoRothEA 项目使用教程
项目地址:https://gitcode.com/gh_mirrors/do/dorothea
1. 项目介绍
DoRothEA 是一个基因调控网络(GRN),包含了人类和小鼠的转录因子(TF)与其目标基因之间的交互信息。这些交互信息基于不同类型的证据进行筛选和收集,并根据支持证据的数量分配了置信水平。DoRothEA 的 regulons(即转录因子及其转录目标的集合)可以与任何统计方法结合使用,从批量或单细胞转录组数据中推断 TF 活性。
该项目提供了一个 R 包,用于访问 DoRothEA 的 regulons。为了推断 TF 活性,建议使用 decoupleR
包,该包在 R 和 Python 中均可使用。
2. 项目快速启动
安装 DoRothEA R 包
DoRothEA 可以通过 Bioconductor 安装,也可以从 GitHub 安装开发版本。
通过 Bioconductor 安装
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("dorothea")
通过 GitHub 安装开发版本
devtools::install_github("saezlab/dorothea")
加载 DoRothEA 包
library(dorothea)
获取 DoRothEA 的 regulons
data(dorothea_hs, package = "dorothea")
head(dorothea_hs)
3. 应用案例和最佳实践
应用案例
DoRothEA 可以应用于以下场景:
- 批量转录组数据分析:使用 DoRothEA 的 regulons 推断转录因子活性,帮助理解基因调控网络。
- 单细胞转录组数据分析:DoRothEA 可以扩展到单细胞 RNA-seq 数据,帮助识别不同细胞状态下的转录因子活性。
最佳实践
- 数据预处理:在使用 DoRothEA 之前,确保输入的转录组数据已经过标准化和过滤。
- 选择合适的置信水平:根据研究需求选择合适的置信水平(如 A、B、C、D)来过滤 regulons。
- 结合其他分析方法:DoRothEA 可以与其他基因调控网络分析方法结合使用,以获得更全面的分析结果。
4. 典型生态项目
decoupleR
decoupleR
是一个用于从 omics 数据中推断生物活性的计算方法集合。它支持多种统计方法,包括 DoRothEA,可以帮助用户从转录组数据中推断转录因子活性。
安装 decoupleR
install.packages("decoupleR")
使用 decoupleR 推断 TF 活性
library(decoupleR)
# 示例代码
activities <- decouple(dorothea_hs, method = "consensus", verbose = TRUE)
head(activities)
CollecTRI
CollecTRI 是一个基于文献的基因调控网络,具有更高的覆盖率和更好的性能,用于识别受扰动的转录因子。建议用户使用 CollecTRI 替代 DoRothEA。
访问 CollecTRI
CollecTRI 的相关信息和使用方法可以在 decoupleR
包的文档中找到。
# 查看 decoupleR 文档
?decoupleR
通过结合使用 DoRothEA 和这些生态项目,用户可以更全面地分析基因调控网络,推断转录因子活性,并应用于各种生物学研究中。
dorothea R package to access DoRothEA's regulons 项目地址: https://gitcode.com/gh_mirrors/do/dorothea
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考