开源项目 Substance Data 指南及问题解决方案

开源项目 Substance Data 指南及问题解决方案

data A uniform interface for domain data (deprecated) data 项目地址: https://gitcode.com/gh_mirrors/data26/data

项目基础介绍

Substance Data 是一个不再维护的数据表示框架,它曾专为 Substance——一个开放的出版平台设计。该框架利用JavaScript实现,提供了简单直观的方式来处理领域数据。通过图状对象模型对数据进行建模,支持JSON序列化。其特性包括数据图抽象、持久化到Data Store的能力、操作转换(用于增量更新)、版本控制等。尽管此项目已被标记为废弃,并建议转向 http://github.com/substance/substance,但了解其核心概念仍对学习类似技术有帮助。

主要编程语言

  • JavaScript

新手注意事项及解决方案

注意事项1:项目已废弃

解决步骤:
  1. 确认最新依赖:虽然不能直接使用此项目,但可通过查看其文档和代码来理解设计理念。对于实际应用,应迁移到 Substance 的最新官方库。
  2. 寻找替代品:访问GitHub上活跃的同类项目,如GitLab上的相关仓库,确保新选的框架活跃且功能满足需求。
  3. 迁移指南:若决定迁移,需详细阅读新的库或框架的迁移文档,按指导逐步替换旧代码。

注意事项2:避免直接使用过时API

解决步骤:
  1. 查阅历史文档:即便项目废弃,旧版本的文档可能在线上存档,学习这些可以理解基本概念。
  2. 适应现代实践:理解当前JavaScript生态中的最佳实践,比如使用TypeScript增加类型安全,或者采用现代框架提供的数据管理方案。

注意事项3:测试与环境配置

解决步骤:
  1. 安装依赖:按照项目说明安装必要的NPM包,使用npm install substance-data(注意这仅是示例,实际项目需找替代)。
  2. 本地环境准备:确保Node.js环境已设置好,对于测试,还需安装Mocha等测试框架全局命令(sudo npm install -g mocha)。
  3. 运行测试:执行npm test验证环境是否正确配置,这也是了解项目功能的好方法。

通过以上步骤,即使是初学者也能安全地探索并从过时项目中学到知识,同时避免了潜在的问题和陷阱。记住,在使用任何开源项目前,评估其活性和支持状态是非常关键的。

data A uniform interface for domain data (deprecated) data 项目地址: https://gitcode.com/gh_mirrors/data26/data

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢璋声Shirley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值