推荐深度学习推荐系统:RippleNet

推荐深度学习推荐系统:RippleNet

去发现同类优质开源项目:https://gitcode.com/

1、项目介绍

RippleNet 是一个基于 PyTorch 的实现,源自论文 "RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems",在第27届国际信息和知识管理大会(CIKM 2018)上发表。这个开源项目旨在将知识图谱(KG)自然地融入到推荐系统中,通过偏好传播方法自动捕捉用户的潜在偏好,深入探索他们的层次化兴趣。

RippleNet Framework

不同于传统的嵌入式和路径基的KG感知推荐方法,RippleNet克服了其局限性,提供了深度端到端的模型。

2、项目技术分析

RippleNet的核心是偏好传播算法。它利用知识图谱中的实体和关系来构建用户兴趣的涟漪效应,从而更好地理解用户的复杂需求。通过在KG中迭代地传播用户对物品的评分,该模型能揭示用户的隐藏兴趣层级,以生成更精准的个性化推荐。

项目代码结构清晰,包括数据处理脚本 preprocess.py 和主程序 main.py,适用于图书和电影领域的数据集。所需的库包括 PyTorch、NumPy 和 Scikit-learn。

3、项目及技术应用场景

  • 电子商务平台:推荐用户可能喜欢的商品,考虑用户过去购买的历史和其他相关商品。
  • 在线媒体服务:如音乐或视频流平台,根据用户的播放历史和相关作品进行个性化推荐。
  • 社交网络:根据用户的关注、分享和点赞行为,提供相关内容推荐。

4、项目特点

  • 深度学习驱动:RippleNet运用神经网络,能够处理复杂的非线性关系,提供更精确的预测。
  • 知识图谱整合:通过知识图谱集成,获取更多上下文信息,提升推荐质量。
  • 偏好传播:创新性地通过传播机制发现用户隐藏的兴趣层。
  • 易于复用和扩展:Python编码,支持PyTorch,便于其他研究者和开发者进行二次开发与应用。

要尝试使用RippleNet,只需按照以下步骤操作:

$ cd src
$ python preprocess.py --dataset movie (or --dataset book)
$ python main.py --dataset movie (note: use -h to check optional arguments)

总之,RippleNet是一个强大且灵活的推荐系统框架,适合对深度学习推荐系统感兴趣的开发者和研究人员。立即加入并体验RippleNet如何革新推荐系统的性能吧!

去发现同类优质开源项目:https://gitcode.com/

【资源说明】 基于BERT事件抽取构建活动知识图谱python源码+项目说明.zip 主要思路: 这是一个基于深度学习的事件抽取。将任务分割为触发词抽取,论元抽取,属性抽取。具体而言是论元和属性的抽取结果依赖于触发词,因此只有一步误差传播。因 time loc 并非每个句子中都存在,并且分布较为稀疏,因此将 time & loc 与 sub & obj 的抽取分开(role1 提取 sub & obj;role2 提取 time & loc) 模型先进行触发词提取,由于数据集的特殊性,模型限制抽取的事件仅有一个,如果抽取出多个触发词,选择 logits 最大的 trigger 作为该句子的触发词,如果没有抽取触发词,筛选整个句子的 logits,取 argmax 来获取触发词; 然后根据触发词抽取模型抽取的触发词,分别输入到 role1 & role2 & attribution 模型中,进行后序的论元提取和属性分类;四种模型都是基于 Roberta-wwm 进行实验,加入了不同的特征。 最后将识别的结果进行整合,得到提交文件。 三、四见pdf 五、项目优缺点 优点: 1、舍弃CRF结构,采用指针式解码的方案,并利用trigger字典。如果未解码出trigger,则比较句子中匹配知识库的所有distant trigger 的 start + end logits,选取最大的一个作为解码出的 trigger 2、具体而言是论元和属性的抽取结果依赖于触发词,因此只有一步误差传播。 3、根据数据的特征,限制解码输出一个trigger,如果解码出多个trigger,选取 logits 最大的那个trigger作为候选trigger 4、根据数据的特点,发现绝大数都有触发词,故采用trigger左右两端动态池化特征作为全局特征; 5、因 time loc 并非每个句子中都存在,并且分布较为稀疏,将 time & loc 和 subject & object 的提取分开,采用两个独立的模型进行提取。 6、由于样本类别不均极其严重,采用10折交叉验证的方法来提升模型的泛化性能。 缺点: 1、因为测试集中的数据不是每一个都带时间和地点,所以时间和地点抽取效果不是很好,如一个句子里存在两个时间,只能抽取前面的时间,但比赛数据的测试集只有一个时间效果很好,只有两条数据集有地点; 2、由于测试集部分数据的trigger词在后面,sub和obj识别顺序会颠倒; 3、特殊测试集trigger与数据集trigger库不一致情况下,无法抽取trigger,但可以在trigger字典库中手动添加 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强妲佳Darlene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值