RippleNet: Propagating User Preferences on the KnowledgeGraph for Recommender Systems

RippleNet是一种利用知识图谱传播用户兴趣的推荐系统框架,解决了传统协同过滤方法的数据稀疏性和冷启动问题。通过在知识图谱上模拟涟漪传播,扩展用户的历史兴趣,形成对候选项目的偏好分布,从而提高推荐的准确性和多样性。在电影、书籍和新闻推荐等多个场景中,RippleNet相比于现有方法表现出显著的性能提升。
摘要由CSDN通过智能技术生成

                                                           论文详解

一、 摘要:

       为解决协调过滤的数据稀疏性和冷启动问题,研究人员通常利用边信息,例如社交网络或者项目属性,去提高推荐性能,这篇文章考虑到因为知识图谱是边缘信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出了一种端到端框架,它自然地将知识图谱结合到推荐系统中。

     与水上传播的实际涟漪类似,RippleNet通过在知识图谱实体集上传播用户兴趣,从而自主迭代地沿着知识图谱中的链接来扩展用户的潜在兴趣

      因此,由用户的历史点击项激活的多个“涟漪”被叠加以形成用户相对于候选项目的偏好分布,该偏好分布可用于预测最终点击概率

      通过在真实世界数据集上的大量实验,本文证明RippleNet在各种场景(包括电影、书籍和新闻推荐)中都能在多个最先进的基线上获得实质性的效果。

二、引言

        推荐系统(Recommender systems,RS)旨在通过为用户寻找一组满足其个性化兴趣的小商品来弥补信息爆炸带来的负面影响。

       在推荐策略中,协作过滤(CF)考虑了用户的历史交互,并根据用户潜在的共同偏好进行推荐,取得了巨大的成功。然而,基于CF的方法通常存在用户-项目交互的稀疏性和冷启动问题。为了解决这些局限性,研究人员提出了将侧边信息整合到CF中,如社交网络、用户/项目属性、图像和上下文。

       在各种类型的边信息中,知识图谱(KG)通常包含更多关于项目的有成效的事实和联系。

     KG用在推荐的好处:

    (1)准确性。KG引入了项目之间的语义关联性,有助于发现它们之间潜在的联系,提高推荐项目的精度;

    (2)多样性。由各种类型的关系组成,有助于合理地维护用户的利益,增加推荐项目的多样性;

     (3)可解释性。KG将用户的历史记录与推荐项目联系起来,从而为推荐系统带来可解释性。

       现有的KG结合推荐可分为两类:

       1.基于嵌入的方法在利用KG来辅助推荐系统方面显示出高度灵活性,但是在这些方法中采用的KGE算法通常更适合于诸如链接预测之类的图形应用,而不是推荐。

       2.基于路径的方法以更自然和直观的方式使用KG,但它们严重依赖于手动设计的元路径,这在实践中很难优化。另一个问题是,在某些实体和关系不在一个域中的场景(例如,新闻推荐)中,不可能设计手工创建的元路径。

三、Ripple net

输入:用户项目对

输出:用户参与(如点击、浏览)项目的概率。

关键思想:偏好传播。

对于每个用户,R

Compared with homogeneous network-based methods, het- erogeneous network-based treatment is closer to reality, due to the different kinds of entities with various kinds of relations [22– 24]. In recent years, knowledge graph (KG) has been utilized for data integration and federation [11, 17]. It allows the knowledge graph embedding (KGE) model to excel in the link prediction tasks [18, 19]. For example, Dai et al. provided a method using Wasser- stein adversarial autoencoder-based KGE, which can solve the problem of vanishing gradient on the discrete representation and exploit autoencoder to generate high-quality negative samples [20]. The SumGNN model proposed by Yu et al. succeeds in inte- grating external information of KG by combining high-quality fea- tures and multi-channel knowledge of the sub-graph [21]. Lin et al. proposed KGNN to predict DDI only based on triple facts of KG [66]. Although these methods have used KG information, only focusing on the triple facts or simple data fusion can limit performance and inductive capability [69]. Su et al. successively proposed two DDIs prediction methods [55, 56]. The first one is an end-to-end model called KG2ECapsule based on the biomedical knowledge graph (BKG), which can generate high-quality negative samples and make predictions through feature recursively propagating. Another one learns both drug attributes and triple facts based on attention to extract global representation and obtains good performance. However, these methods also have limited ability or ignore the merging of information from multiple perspectives. Apart from the above, the single perspective has many limitations, such as the need to ensure the integrity of related descriptions, just as network-based methods cannot process new nodes [65]. So, the methods only based on network are not inductive, causing limited generalization [69]. However, it can be alleviated by fully using the intrinsic property of the drug seen as local information, such as chemical structure (CS) [40]. And a handful of existing frameworks can effectively integrate multi-information without losing induction [69]. Thus, there is a necessity for us to propose an effective model to fully learn and fuse the local and global infor- mation for improving performance of DDI identification through multiple information complementing.是什么意思
06-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值