3D Gaussian Splat 文件格式项目教程

3D Gaussian Splat 文件格式项目教程

spz File format for 3D Gaussian splats. About 10x smaller than the PLY equivalent with virtually no perceptible loss in visual quality. Offered as open source by Niantic Labs. More details at https://scaniverse.com/spz #3dgaussiansplats #gaussiansplatting spz 项目地址: https://gitcode.com/gh_mirrors/sp/spz

1. 项目介绍

本项目是由Niantic Labs提供的一个开源项目,旨在提供一个名为.spz的3D Gaussian splat文件格式。这种格式相较于传统的.ply格式,能够实现大约10倍的压缩率,同时几乎不损失视觉效果。这个项目包含了一个C++库,用于保存和加载.spz格式的数据。

2. 项目快速启动

要开始使用这个项目,您需要先安装C++编译环境和所需的依赖库。以下是快速启动的步骤:

首先,确保您的系统中安装了C++编译器和libz库。

然后,从GitHub克隆项目到本地:

git clone https://github.com/nianticlabs/spz.git

接下来,您可以使用以下代码示例来保存和加载.spz文件:

#include <vector>
#include "spz.h"

// 保存GaussianCloud到.spz格式
bool saveCloudToSpz(const GaussianCloud& gaussians, const std::string& filename) {
    std::vector<uint8_t> output;
    if (saveSpz(gaussians, &output)) {
        // 写入文件
        std::ofstream file(filename, std::ios::binary);
        file.write(reinterpret_cast<const char*>(output.data()), output.size());
        return file.good();
    }
    return false;
}

// 从.spz格式加载GaussianCloud
bool loadCloudFromSpz(GaussianCloud& gaussians, const std::string& filename) {
    std::ifstream file(filename, std::ios::binary);
    std::vector<uint8_t> data((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
    gaussians = loadSpz(data);
    return !gaussians.empty();
}

确保将spz.h替换为实际的头文件路径,并正确处理GaussianCloud类的定义。

3. 应用案例和最佳实践

.spz格式适用于需要高效存储和传输3D数据的场景。以下是一些应用案例和最佳实践:

  • 案例1:在3D扫描和重建中,使用.spz格式存储扫描数据,以减少存储需求和加速数据传输。
  • 案例2:在虚拟现实应用中,利用.spz格式优化模型资源,提高加载速度和运行效率。

最佳实践是,在保存数据前,确保对Gaussian数据进行了适当的预处理,比如归一化和量化,以最大化压缩率。

4. 典型生态项目

目前,.spz格式主要在Niantic Labs的内部项目中使用,但它是开源的,因此社区中可能出现各种第三方项目和工具,这些项目可能包括:

  • 转换工具:将其他3D格式转换为.spz格式。
  • 可视化工具:用于查看.spz文件中的3D数据。
  • 插件:集成到现有3D编辑器和引擎中的插件。

这些生态项目将有助于推广和使用.spz格式,并进一步扩展其应用范围。

spz File format for 3D Gaussian splats. About 10x smaller than the PLY equivalent with virtually no perceptible loss in visual quality. Offered as open source by Niantic Labs. More details at https://scaniverse.com/spz #3dgaussiansplats #gaussiansplatting spz 项目地址: https://gitcode.com/gh_mirrors/sp/spz

### 关于 Gaussian Splat SLAM 的综述 #### 研究论文概述 Gaussian Splat SLAM 是一种利用高斯分布表示点云的方法,在即时定位与地图构建(SLAM)领域取得了显著进展。一项重要的研究工作来自2023年的 SIGGRAPH 最佳论文,“3D Gaussian Splatting for Real-Time Radiance Field Rendering”,该研究表明通过采用三维高斯体素来表达场景中的物体,可以在保持高效计算的同时获得高质量的重建效果[^1]。 另一项针对不同SLAM系统的性能评估显示,基于高斯溅射(Gaussian Splatting)技术的不同算法在 TUM-RGBD 和 Replica 数据集上表现出不同的绝对轨迹误差(ATE)均方根误差(RMSE),其中某些特定实现如 Gaussian Splatting SLAM 达到了较低的 ATE 值 1.58 cm 及 RMSE 0.79 cm, 表明其具有较高的精度和稳定性[^2]。 #### 实现方法解析 为了理解如何具体实施这一类 SLAM 方法,可以从以下几个方面入手: - **数据采集**:使用 RGB-D 相机或其他传感器获取环境图像序列作为输入。 - **特征提取**:对于每一帧图像,识别并跟踪关键点位置;这些关键点随后被建模成带有协方差矩阵的多维高斯函数形式。 - **状态估计**:结合视觉里程计VO(Visual Odometry)、惯性测量单元IMU等辅助设备的信息更新机器人位姿,并修正累积漂移带来的偏差。 - **映射建立**:随着机器人的移动不断积累观测到的空间结构信息形成全局一致的地图模型。 - **优化过程**:运用束调整BA(Bundle Adjustment)或者其他非线性最小二乘法求解最优参数配置,从而提高整体系统鲁棒性和准确性。 ```python import numpy as np def update_gaussian_splat(splat_map, new_observation): """ 更新给定观察下的高斯溅射图 参数: splat_map (dict): 当前已有的高斯溅射记录字典 new_observation (tuple): 新加入的关键点坐标及其对应属性 返回值: updated_map (dict): 经过此次迭代后的最新版本高斯溅射表征 """ keypoint_position, covariance_matrix = new_observation[:3], new_observation[3:] if tuple(keypoint_position) not in splat_map: splat_map[tuple(keypoint_position)] = [] splat_map[tuple(keypoint_position)].append(covariance_matrix) return splat_map ``` 此代码片段展示了简化版的单个高斯斑点更新逻辑,实际应用中还需要考虑更多因素比如权重分配、重投影误差校正等等。 #### 应用场景探讨 目前,这类技术已经在多个领域找到了实用价值: - **增强现实AR/虚拟现实VR**:提供更加逼真的交互体验,允许用户自然地探索复杂环境中未见过的角度; - **无人驾驶车辆AV**:帮助汽车更精确地感知周围障碍物的位置关系,进而做出合理避让决策; - **室内导航服务IN**:支持智能导览装置快速适应变化着的建筑内部布局,为访客指引方向; - **工业自动化IA**:助力机械臂精准抓取目标物件,减少因误判造成的生产事故风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾雁冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值