推荐文章:探索高效贝叶斯推断新境界——Variational Bayesian Monte Carlo (VBMC)

推荐文章:探索高效贝叶斯推断新境界——Variational Bayesian Monte Carlo (VBMC)

vbmcVariational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference in MATLAB项目地址:https://gitcode.com/gh_mirrors/vb/vbmc

项目简介

在计算密集型模型的海洋中,精确评估模型参数后验分布和对数边缘似然(关键的贝叶斯模型选择指标)往往成为瓶颈。为此,我们向您隆重介绍Variational Bayesian Monte Carlo (VBMC)——版本1.0.12,一个革命性的近似推断框架,专为有限预算下的复杂模型而生。借助其强大的Python实现(PyVBMC),以及最新发表在NeurIPS的研究成果,VBMC正迅速成为高效样本推理领域的明星工具。

技术剖析

VBMC融合了两大机器学习领域内的精髓:变分推断与贝叶斯积分,通过构建高斯过程近似目标后验分布,并利用混合高斯分布进行优化匹配,以此逼近真实的后验。其核心在于通过主动采样策略迭代精炼这一近似,同时以快速的贝叶斯积分估算证据下界(ELBO),无需额外的目标函数求值。这种设计不仅效率卓越,而且对潜在的噪声型似然函数提供了出色的支持,拓宽了其应用范围。

应用场景概览

从神经科学到认知科学,乃至任何依赖昂贵计算模型的科研和工业领域,VBMC都能大展身手。尤其当面对黑盒模型、计算成本高昂(每个评估超过半秒)、参数空间不大于20维的挑战时,其优势尤为明显。它适合那些无法利用经典概率编程框架(如Stan或PyMC3)进行解析表达的模型。此外,对于模拟型模型,VBMC的新功能允许直接处理噪声数据,大大扩展了其应用潜力。

项目亮点

  1. 高效与适应性强:几乎无须调参即可运行,特别适合已有BADS经验的用户。
  2. 全面支持噪声环境:VBMC v1.0引入了对嘈杂模型的支持,显著提升了处理模拟数据和不确定性估计的能力。
  3. 科学验证与基准测试:经过广泛的实际案例与基准测试验证,证明了在多维度复杂模型中的性能超越。
  4. 易用性与文档完善:提供详尽的教程、例程和及时更新的FAQ,确保快速上手。

结语

VBMC不仅仅是一个软件包,它是科学界在高效贝叶斯推断领域的一次重要突破。对于那些在模型适配和证据评估过程中面临计算瓶颈的研究者来说,VBMC提供了一个强大且灵活的解决方案。无论是理论研究还是实际应用,VBMC都有望成为您的得力助手,引领您深入探索数据分析的未知领域。立即体验VBMC及其Python版PyVBMC,解锁高性能、低开销的贝叶斯模型选择新时代。

vbmcVariational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference in MATLAB项目地址:https://gitcode.com/gh_mirrors/vb/vbmc

**描述:“适用于JDK8的环境”** 本文将深入探讨Neo4j社区版3.5.6版本,这是一个基于图数据库的强大工具,特别适用于知识图谱构建和可视化。由于其运行需求,必须在Java Development Kit(JDK)8的环境下进行安装和操作。 **一、Neo4j概述** Neo4j是一款开源的图形数据库,它以节点、关系和属性的形式存储数据,这使得处理复杂网络结构的数据变得更为直观和高效。Neo4j社区版是免费的,适合开发和学习用途,而企业版则提供了更多的高级功能和服务。 **二、JDK8要求** 为了运行Neo4j 3.5.6,你需要在你的计算机上安装JDK8。JDK是Java开发工具包,包含了运行Java应用程序所需的Java虚拟机(JVM)以及一系列开发工具。确保安装的是与Neo4j版本兼容的JDK版本至关重要,因为不兼容的JDK可能会导致运行错误或性能问题。 **三、安装和配置** 1. **下载与解压**: 从官方渠道下载"neo4j-community-3.5.6.zip"压缩文件,并将其解压到你选择的目录。 2. **环境变量配置**: 配置系统环境变量,将Neo4j的bin目录添加到PATH环境变量中,以便于命令行启动和管理数据库。 3. **修改配置文件**: Neo4j的配置主要通过`conf/neo4j.conf`文件进行,如需更改默认设置,如内存分配、端口设置等,应在此文件中进行修改。 4. **启动和停止**: 使用`neo4j console`命令启动服务,`neo4j stop`命令关闭服务。 **四、知识图谱与可视化** Neo4j因其强大的图数据模型,成为构建知识图谱的理想选择。你可以使用Cypher查询语言来操作和查询图数据,它的语法简洁且直观,易于学习。 1. **Cypher语言**: Cypher是一种声明式、图形化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟萌耘Ralph

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值