MASt3R-SLAM: 实时稠密SLAM与3D重建先验

MASt3R-SLAM: 实时稠密SLAM与3D重建先验

MASt3R-SLAM [CVPR 2025] MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors MASt3R-SLAM 项目地址: https://gitcode.com/gh_mirrors/ma/MASt3R-SLAM

项目介绍

MASt3R-SLAM 是一个基于深度学习的实时稠密SLAM系统,它利用3D重建先验来提高定位和地图构建的准确性。该系统由 Riku Murai、Eric Dexheimer 和 Andrew J. Davison 合作开发,能够在多种环境中实现高效的SLAM(Simultaneous Localization and Mapping,即同时定位与建图)。

项目快速启动

以下是一个快速启动MASt3R-SLAM项目的步骤:

环境搭建

  1. 创建一个新的conda环境:

    conda create -n mast3r-slam python=3.11
    conda activate mast3r-slam
    
  2. 检查CUDA版本:

    nvcc --version
    
  3. 根据CUDA版本安装PyTorch:

    # CUDA 11.8
    conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1  pytorch-cuda=11.8 -c pytorch -c nvidia
    
    # CUDA 12.1
    conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia
    
    # CUDA 12.4
    conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.4 -c pytorch -c nvidia
    
  4. 克隆仓库并安装依赖:

    git clone https://github.com/rmurai0610/MASt3R-SLAM.git --recursive
    cd MASt3R-SLAM/
    # 如果克隆仓库时未使用 --recursive,运行以下命令
    # git submodule update --init --recursive
    pip install -e thirdparty/mast3r
    pip install -e thirdparty/in3d
    pip install --no-build-isolation -e .
    
  5. 可选安装 torchcodec 以加速MP4加载:

    pip install torchcodec==0.1
    

检查点设置

  1. 创建一个用于存放检查点的目录:

    mkdir -p checkpoints/
    
  2. 下载检查点文件:

    wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth -P checkpoints/
    wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric_retrieval_trainingfree.pth -P checkpoints/
    wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric_retrieval_codebook.pkl -P checkpoints/
    

运行示例

  1. 下载TUM数据集:

    bash ./scripts/download_tum.sh
    
  2. 运行示例:

    python main.py --dataset datasets/tum/rgbd_dataset_freiburg1_room/ --config config/calib.yaml
    

应用案例和最佳实践

使用RealSense相机

连接一个RealSense相机到PC,并运行以下命令:

python main.py --dataset realsense --config config/base.yaml

处理视频

系统可以处理MP4视频或包含RGB图像的文件夹。以下是如何处理视频的示例:

python main.py --dataset <path/to/video>.mp4 --config config/base.yaml
python main.py --dataset <path/to/folder> --config config/base.yaml

如果已知校准参数,可以在intrinsics.yaml中指定,然后运行:

python main.py --dataset <path/to/video>.mp4 --config config/base.yaml --calib config/intrinsics.yaml
python main.py --dataset <path/to/folder> --config config/base.yaml --calib config/intrinsics.yaml

典型生态项目

MASt3R-SLAM可以作为多种应用的基础,例如机器人导航、增强现实(AR)和虚拟现实(VR)等。以下是一些可能的项目示例:

  • 机器人导航系统:集成MASt3R-SLAM以实现机器人自主导航和地图构建。
  • 增强现实应用:使用MASt3R-SLAM进行实时的环境理解,以增强虚拟物体的放置和交互。
  • 虚拟现实体验:结合MASt3R-SLAM提供的空间感知能力,为用户提供沉浸式的虚拟现实体验。

MASt3R-SLAM的开源特性和强大的功能使其成为一个适用于多种场景的优秀SLAM解决方案。

MASt3R-SLAM [CVPR 2025] MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors MASt3R-SLAM 项目地址: https://gitcode.com/gh_mirrors/ma/MASt3R-SLAM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚蔚桑Dominique

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值