Shape As Points 项目教程

Shape As Points 项目教程

shape_as_points [NeurIPS'21] Shape As Points: A Differentiable Poisson Solver shape_as_points 项目地址: https://gitcode.com/gh_mirrors/sh/shape_as_points

1. 项目介绍

Shape As Points (SAP) 是一个用于3D形状重建的开源项目,由Songyou Peng等人开发,并在NeurIPS 2021上发表。该项目通过引入一个可微分的泊松表面重建(Poisson Surface Reconstruction, PSR)层,将点云与网格之间的转换变得可微分,从而实现了高效的3D表面重建。

SAP模型结合了显式和隐式形状表示的优点,既具有显式表示的轻量级和可解释性,又具有隐式表示的高质量表面生成能力。与传统的神经隐式表示相比,SAP模型在推理时间上快了一个数量级,并且生成的表面是拓扑无关的、水密的。

2. 项目快速启动

安装依赖

首先,确保你已经安装了Anaconda。然后,创建并激活一个名为sap的Anaconda环境:

conda env create -f environment.yaml
conda activate sap

接下来,安装PyTorch3D和PyTorch Scatter:

conda install pytorch-scatter -c pyg

下载演示数据

运行以下脚本以获取演示数据:

bash scripts/download_demo_data.sh

优化基于的3D表面重建

你可以使用以下命令快速测试项目代码:

python optim_hierarchy.py configs/optim_based/teaser.yaml

该脚本将在out/demo_optim文件夹中生成输出网格和优化后的定向点云。

学习基于的3D表面重建

对于带有大量噪声的点云,你可以运行:

python generate.py configs/learning_based/demo_large_noise.yaml

结果可以在out/demo_shapenet_large_noise/generation/vis中找到。

对于带有异常值的点云,你可以运行:

python generate.py configs/learning_based/demo_outlier.yaml

结果可以在out/demo_shapenet_outlier/generation/vis中找到。

3. 应用案例和最佳实践

优化基于的3D重建

SAP可以用于从仅包含噪声的未定向点云或扫描数据中进行3D重建。例如,可以从一个带有噪声的点云中重建出一个高质量的3D模型。

学习基于的3D重建

SAP还可以用于训练深度神经网络的参数,以处理大量噪声和异常值。通过使用预训练模型,可以快速生成高质量的3D模型。

4. 典型生态项目

ConvONet

ConvONet是一个基于卷积神经网络的3D重建项目,与SAP类似,它也利用了神经隐式表示来进行3D形状重建。

NICE-SLAM

NICE-SLAM是一个用于SLAM(同步定位与地图构建)的开源项目,它结合了神经隐式表示和显式表示,以实现高效的实时3D重建。

UNISURF

UNISURF是一个用于无监督3D表面重建的项目,它通过结合显式和隐式表示,实现了高质量的3D表面生成。

KiloNeRF

KiloNeRF是一个用于快速神经辐射场(NeRF)渲染的项目,它通过高效的神经网络结构,实现了快速的3D场景渲染。

通过结合这些生态项目,可以进一步扩展SAP的应用场景,实现更复杂的3D重建任务。

shape_as_points [NeurIPS'21] Shape As Points: A Differentiable Poisson Solver shape_as_points 项目地址: https://gitcode.com/gh_mirrors/sh/shape_as_points

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### AlphaShape算法的实现与应用 #### 一、AlphaShape算法简介 AlphaShape是一种基于点集几何结构的算法,广泛应用于三维建模、体积计算以及表面重建等领域。该算法通过调整参数`alpha`来控制生成形状的复杂程度和细节水平[^1]。 --- #### 二、AlphaShape算法的核心原理 AlphaShape算法的基础是凸包理论,但它允许生成非凸形状,因此更适合处理复杂的几何体。其核心在于定义一个球半径`alpha`,并以此决定哪些点之间的连接有效。较小的`alpha`值会产生更细致的形状,而较大的`alpha`值则趋向于生成更平滑的结果[^3]。 --- #### 三、AlphaShape算法的具体实现 以下是使用MATLAB实现AlphaShape算法的一个典型例子: ```matlab % 输入:假设已有一个Nx3的矩阵points表示树冠点云数据 alpha = 1.0; % 设置Alpha参数,控制形状的光滑度 shp = alphaShape(points(:, 1), points(:, 2), points(:, 3), alpha); % 构造AlphaShape对象 volume = volume(shp); % 计算体积 figure; plot(shp); % 可视化结果 disp(['树冠体积:', num2str(volume)]); % 显示体积 ``` 上述代码展示了如何利用MATLAB内置的`alphaShape`函数完成树冠体积的计算。通过设置合适的`alpha`值,可以精确地拟合目标物体的边界[^2]。 --- #### 四、Python中的AlphaShape实现 除了MATLAB外,在Python中也可以借助第三方库(如Shapely)实现AlphaShape算法。以下是一个简单的示例: ```python from shapely.geometry import MultiPoint, Polygon import matplotlib.pyplot as plt from descartes import PolygonPatch def alpha_shape(points, alpha): from alphashape import alphashape return alphashape(points, alpha) # 示例点集 points = [(0, 0), (1, 0), (1, 1), (0, 1), (0.5, 0.5)] # 调整alpha值以改变形状 alpha_value = 0.2 shape = alpha_shape(points, alpha=alpha_value) # 绘制结果 fig, ax = plt.subplots() ax.scatter(*zip(*points)) ax.add_patch(PolygonPatch(shape, alpha=0.2, color='blue')) plt.show() ``` 这段代码演示了如何在二维空间中创建AlphaShape,并将其可视化[^4]。 --- #### 五、AlphaShape的应用场景 1. **树冠体积计算** 利用AlphaShape算法可以从树木的三维点云数据中提取出树冠的实际体积,这对于林业资源管理和生态研究具有重要意义。 2. **医学影像分析** 在CT或MRI扫描图像中,可以通过AlphaShape算法分割特定器官或病变区域的轮廓,并进一步估算其体积。 3. **地理信息系统(GIS)** AlphaShape可用于地形建模,帮助生成地貌特征图层或者评估土地覆盖情况。 4. **机器人路径规划** 结合传感器获取的环境点云数据,AlphaShape可以帮助构建障碍物模型,辅助机器人导航决策过程。 --- #### 六、注意事项 - 参数`alpha`的选择至关重要,过小可能导致过度拟合噪声;过大可能丢失重要细节[^3]。 - 数据质量直接影响最终结果的质量,建议预处理原始点云以去除异常值和冗余信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

屈心可

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值