开源项目 `pole-localization` 使用教程

开源项目 pole-localization 使用教程

pole-localization Online Range Image-based Pole Extractor for Long-term LiDAR Localization in Urban Environments pole-localization 项目地址: https://gitcode.com/gh_mirrors/po/pole-localization

1. 项目介绍

pole-localization 是一个用于在城市环境中进行长期 LiDAR 定位的在线范围图像基杆提取器。该项目由 Hao Dong 和 Xieyuanli Chen 开发,并在 ECMR2021 和 RAS 期刊上发表了相关论文。该项目的主要功能是将 LiDAR 点云投影到范围图像中,并从中提取杆状物体,然后基于这些提取的杆状物体构建全局杆状地图,并提出基于杆状物体的观测模型用于 MCL(蒙特卡罗定位)以在地图中定位机器人。

2. 项目快速启动

2.1 环境准备

确保你的系统环境满足以下要求:

  • Ubuntu 20.04
  • Python 3.8

2.2 安装依赖

首先,克隆项目到本地:

git clone https://github.com/PRBonn/pole-localization.git
cd pole-localization

然后,安装所需的 Python 依赖:

pip install numpy matplotlib open3d-python progressbar2 pyquaternion transforms3d scipy scikit-image networkx numba arrow pykitti

2.3 数据准备

2.3.1 NCLT 数据集

下载 NCLT 数据集并将其解压到 /nclt/data 文件夹中,然后运行以下命令:

python src/ncltpoles.py
2.3.2 KITTI 数据集

下载 KITTI 原始数据 2011_09_26_drive_0009,并将其解压到 /kitti/raw_data 文件夹中,然后运行以下命令:

./kitti_downloader.sh
python src/kittipoles.py
2.3.3 MulRan 数据集

下载 KAIST 01 和 KAIST 02 数据集,并将其解压到 /mulran/data 文件夹中,然后运行以下命令:

python src/mulranpoles.py

2.4 运行项目

根据你使用的数据集,运行相应的脚本即可启动项目。

3. 应用案例和最佳实践

3.1 城市环境中的长期 LiDAR 定位

该项目的主要应用场景是在城市环境中进行长期的 LiDAR 定位。通过提取环境中的杆状物体,项目能够构建一个稳定的全局地图,并在此基础上进行精确的定位。

3.2 最佳实践

  • 数据预处理:确保输入的 LiDAR 数据质量高,避免噪声和异常值。
  • 参数调优:根据具体的环境和数据集,调整项目的参数以获得最佳的定位效果。
  • 地图更新:定期更新全局杆状地图,以适应环境的变化。

4. 典型生态项目

4.1 polex

polex 是一个与 pole-localization 类似的杆状物体提取项目,可以作为该项目的补充工具,提供更多的杆状物体提取算法。

4.2 SalsaNext

SalsaNext 是一个用于 LiDAR 点云分割的项目,可以与 pole-localization 结合使用,提供更全面的点云处理能力。

通过这些生态项目的结合,可以进一步提升 LiDAR 定位的精度和稳定性。

pole-localization Online Range Image-based Pole Extractor for Long-term LiDAR Localization in Urban Environments pole-localization 项目地址: https://gitcode.com/gh_mirrors/po/pole-localization

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邢霜爽Warrior

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值