SPLADE 项目使用教程

SPLADE 项目使用教程

splade SPLADE: sparse neural search (SIGIR21, SIGIR22) splade 项目地址: https://gitcode.com/gh_mirrors/sp/splade

1. 项目介绍

SPLADE(Sparse Lexical and Expansion Model for First Stage Ranking)是一个用于信息检索的稀疏神经网络模型。SPLADE 通过 BERT 的 MLM 头和稀疏正则化来学习查询和文档的稀疏扩展。与密集表示方法相比,稀疏表示具有以下优势:

  • 高效使用倒排索引
  • 显式词汇匹配
  • 可解释性

SPLADE 在域外数据(如 BEIR 基准测试)上表现出色,并且在 MS MARCO 等域内数据集上也表现优异。SPLADE 项目包含训练、索引和检索 SPLADE 模型的代码,并支持在 BEIR 基准上进行评估。

2. 项目快速启动

环境准备

首先,建议从新环境开始,并从 conda_splade_env.yml 文件中安装所需的包。

conda create -n splade_env python=3.9
conda activate splade_env
conda env create -f conda_splade_env.yml

快速启动

在根目录下运行以下命令,以在玩具数据上执行所有步骤(使用 config_default.yaml 配置):

conda activate splade_env
export PYTHONPATH=$PYTHONPATH:$(pwd)
export SPLADE_CONFIG_NAME="config_default.yaml"
python3 -m splade.all \
  config.checkpoint_dir=experiments/debug/checkpoint \
  config.index_dir=experiments/debug/index \
  config.out_dir=experiments/debug/out

3. 应用案例和最佳实践

模型推理

inference_splade.ipynb 允许你加载并使用训练好的模型进行推理,以检查预测的“扩展词袋”。

模型训练

你可以使用以下命令进行模型训练:

python3 -m splade.train

索引和检索

索引和检索可以通过以下命令完成:

python3 -m splade.index
python3 -m splade.retrieve

创建 Anserini 可读文件

在训练后,运行以下命令以创建 Anserini 可读文件:

SPLADE_CONFIG_FULLPATH=/path/to/checkpoint/dir/config.yaml python3 -m splade.create_anserini +quantization_factor_document=100 +quantization_factor_query=100

4. 典型生态项目

Hugging Face

SPLADE 的权重可以在 Hugging Face 上找到,例如:

BEIR 基准

SPLADE 支持在 BEIR 基准上进行评估,BEIR 是一个用于评估信息检索模型的基准数据集。

Anserini

SPLADE 的索引和检索功能可以与 Anserini 集成,Anserini 是一个用于信息检索的开源工具包。

通过这些生态项目,SPLADE 可以与其他信息检索工具和平台无缝集成,提供更强大的检索能力。

splade SPLADE: sparse neural search (SIGIR21, SIGIR22) splade 项目地址: https://gitcode.com/gh_mirrors/sp/splade

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 关于 Milvus 和 BGE 技术文档与使用教程 #### Milvus 文档资源 Milvus 是一款开源的分布式向量数据库,支持多种高级功能如hybrid search、元数据过滤和重排(Reranking)。对于希望深入理解和有效利用该平台的人来说,官方提供了详尽的技术文档和支持材料。用户可以访问[Milvus 官方网站](https://milvus.io/)获取最新版本的产品介绍和技术细节[^1]。 为了帮助开发者更好地掌握 Milvu 的安装配置及其核心特性,官方网站上还设有专门的学习路径页面,其中包含了从入门到精通的一系列课程链接。此外,针对特定需求的应用场景案例研究也十分有助于理解如何将理论应用于实践当中[^3]。 #### BGE (BERT-based General Encoder) 资源 BGE-M3 和 Splade 都是在 BERT 架构基础上进一步发展的模型。要全面了解这类编码器的工作机制,则需先熟悉 BERT 自身的设计理念及其实现方式。关于这一点,《Transformers: State-of-the-Art Natural Language Processing》一书给出了非常详细的解释说明[^2]。 与此同时,Hugging Face 平台上的 Model Hub 不仅收录了大量的预训练模型可供下载试用,而且每个项目页都附有相应的 API 参考手册以及简单的演示实例代码片段,非常适合初学者快速上手尝试。 ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') inputs = tokenizer("Hello world!", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` #### 综合应用指导 当考虑构建基于 Milvus 和 BGE 的应用程序时,建议参考一些已有的成功案例来启发思路。例如,在某些问答系统中,可以通过集成这两项技术实现高效的语义匹配过程:首先采用 BGE 对输入文本进行特征提取得到固定长度表示形式;接着把这些向量存入 Milvus 数据库以便后续相似度计算操作;最后依据检索结果返回最接近的答案选项给用户[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁承榕Song-Thrush

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值