探索Splade:高效、可扩展的大规模预训练模型

Splade是一个由Naver开发的轻量级预训练模型,通过稀疏表示提高效率,适用于大规模文本处理。它在保持性能的同时降低了内存和计算成本,适用于搜索引擎、问答系统和知识图谱应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

探索Splade:高效、可扩展的大规模预训练模型

splade SPLADE: sparse neural search (SIGIR21, SIGIR22) 项目地址: https://gitcode.com/gh_mirrors/sp/splade

是一个开源的、基于Transformer架构的预训练模型,专为信息检索和问答任务设计。这个项目由Naver公司开发,旨在提供一种轻量级但性能强大的解决方案,用于处理大规模文本数据。

项目简介

Splade(Sparse Linear Approximation for Dense Models)的核心思想是通过稀疏表示来近似稠密向量,以减少内存占用和计算成本。这种方法在保持与大型密集预训练模型相似的性能的同时,显著提高了效率。对于需要处理大量文档和查询的应用场景,如搜索引擎或知识图谱,Splade是一个理想的选择。

技术分析

  • 稀疏表示:Splade引入了一种创新的稀疏矩阵运算,允许模型在不牺牲太多精度的情况下,减少内存消耗和计算复杂度。相比于传统的全连接向量,这种方法降低了存储需求,并加快了推理速度。

  • Transformer架构:基于Transformer的设计使Splade能够捕获长距离依赖,这是自然语言处理任务的关键。它利用自注意力机制对输入序列进行编码,从而理解上下文信息。

  • 微调和拓展性:Splade可以微调到特定的信息检索或问答任务上,并且容易与其他系统集成。此外,项目提供了详细的文档和示例代码,方便开发者理解和实现。

应用场景

  • 信息检索:Splade可以用于构建高效的搜索引擎,帮助用户快速准确地找到相关信息。

  • 问答系统:在对话式AI或智能助手中,Splade能够以较低的资源代价提供高质量的回答。

  • 知识图谱:对于知识图谱的查询和推理,Splade的高效性和准确性使其成为有力工具。

主要特点

  1. 高效:较低的内存要求和更快的运行速度,适合处理大数据量。
  2. 轻量化:相比其他大模型,Splade更适合部署在资源有限的设备上。
  3. 高性价比:即使在资源受限的情况下,也能保持接近于全密度模型的性能。
  4. 开放源码:完全免费并开源,社区活跃,持续更新优化。

总结

Splade以其独特的稀疏表示法和出色的性能,为大规模语料库的处理开辟了新的道路。无论你是研究者还是开发者,如果你正在寻找一个既能保持高性能又能降低资源需求的预训练模型,那么Splade值得一试。立即查看,开始探索 Splade 的强大功能吧!

splade SPLADE: sparse neural search (SIGIR21, SIGIR22) 项目地址: https://gitcode.com/gh_mirrors/sp/splade

### 使用BERT与SPLADE进行文本处理 #### SPLADE简介 SPLADE是一种创新的方法,旨在通过生成Learned稀疏向量来改进信息检索系统的性能[^2]。相比于传统的稠密向量表示方法,如由BERT产生的那些,SPLADE专注于创建能够高效索引和查询的稀疏向量。 #### 集成BERT到SPLADE框架内 为了将BERT融入SPLADE的工作流程中,可以采用如下方式: 1. **初始化模型** 利用预训练好的BERT模型作为基础架构,加载相应的权重文件。 ```python from transformers import BertModel, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') ``` 2. **获取上下文化的Embedding** 对于给定的一段文本,先将其转换为适合输入至BERT的形式——token序列;随后调用`model()`函数得到对应的隐含状态(hidden states),这一步骤实际上就是获得了经过上下文调整后的embedding矩阵H[i]. 3. **映射至稀疏空间** 接下来的任务是从这些密集型embeddings出发,构建起具有特定结构特点的稀疏向量。此过程涉及到对原始特征的选择以及可能存在的降维操作,最终目的是形成易于存储且计算成本较低的新表征形式。 4. **应用SPLADE机制** 将上述获得的稀疏向量应用于具体的任务场景下,比如文档分类、问答系统或是搜索引擎优化等。此时便能充分发挥出SPLADE的优势所在,在保持较高精度的同时显著降低资源消耗。 5. **实例化代码展示** 下面给出一段简单的Python脚本片段,展示了如何结合两者优势完成一次基本的文本相似度评估任务: ```python import torch from scipy.sparse import csr_matrix from sklearn.metrics.pairwise import cosine_similarity def get_sparse_representation(texts): inputs = tokenizer.batch_encode_plus( texts, padding=True, truncation=True, max_length=512, return_tensors="pt" ) with torch.no_grad(): outputs = model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1).numpy() # 转换成稀疏矩阵 (此处仅为示意,实际应依据具体情况设计) sparse_vectors = [] for emb in embeddings: indices = np.where(emb != 0)[0] data = emb[indices] indptr = [len(indices)] sv = csr_matrix((data, indices, indptr), shape=(1, len(embeddings))) sparse_vectors.append(sv) return sparse_vectors query_text = "example query text here." document_texts = ["first document content.", "second document content."] sparse_query_vector = get_sparse_representation([query_text])[0] sparse_doc_vectors = get_sparse_representation(document_texts) similarities = cosine_similarity(sparse_query_vector.toarray(), [v.toarray() for v in sparse_doc_vectors]) print(similarities) ``` 这段代码首先定义了一个辅助函数`get_sparse_representation`,它接收一批文本字符串列表作为参数,并返回相应数量的稀疏向量对象。接着分别针对查询串和待比较的文章集合执行该函数,最后借助余弦相似度算法衡量两者的接近程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周琰策Scott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值