ResNetLSTM 项目使用教程
ResNetLSTM 项目地址: https://gitcode.com/gh_mirrors/re/ResNetLSTM
1. 项目目录结构及介绍
ResNetLSTM/
├── data/
│ ├── final_result/
│ └── pictures/
├── README.md
├── ResLSTM.py
├── adjacency.csv
├── load_data.py
├── metrics.py
├── model.png
目录结构说明
- data/: 存放数据文件的目录,包含最终结果和图片。
- final_result/: 存放最终结果的文件夹。
- pictures/: 存放图片的文件夹。
- README.md: 项目的说明文档。
- ResLSTM.py: 项目的启动文件,包含主要的代码逻辑。
- adjacency.csv: 邻接矩阵文件,用于图卷积网络(GCN)。
- load_data.py: 数据加载模块,负责加载和预处理数据。
- metrics.py: 评估指标模块,定义了模型评估的指标。
- model.png: 模型结构图,展示了ResNet和LSTM的结合方式。
2. 项目的启动文件介绍
ResLSTM.py
ResLSTM.py
是项目的启动文件,包含了主要的代码逻辑。以下是该文件的主要功能模块:
- 数据加载: 使用
load_data.py
模块加载数据。 - 模型定义: 定义了ResNet和LSTM结合的模型结构。
- 训练过程: 包含了模型的训练逻辑,包括前向传播、损失计算和反向传播。
- 评估过程: 使用
metrics.py
模块进行模型评估。
关键代码片段
# 数据加载
data = load_data()
# 模型定义
model = ResNetLSTM()
# 训练过程
for epoch in range(num_epochs):
model.train()
for batch in data:
inputs, labels = batch
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 评估过程
model.eval()
with torch.no_grad():
for batch in data:
inputs, labels = batch
outputs = model(inputs)
metrics.update(outputs, labels)
3. 项目的配置文件介绍
配置文件
项目中没有显式的配置文件,但可以通过以下方式进行配置:
- 数据路径: 在
load_data.py
中指定数据路径。 - 模型参数: 在
ResLSTM.py
中定义模型的超参数,如学习率、批次大小等。 - 评估指标: 在
metrics.py
中定义评估指标。
示例配置
# load_data.py
def load_data():
data_path = 'data/final_result/'
# 加载数据逻辑
return data
# ResLSTM.py
num_epochs = 10
batch_size = 32
learning_rate = 0.001
# metrics.py
def update(outputs, labels):
# 更新评估指标逻辑
pass
通过以上配置,可以灵活地调整项目的运行参数和数据路径,以适应不同的需求。
ResNetLSTM 项目地址: https://gitcode.com/gh_mirrors/re/ResNetLSTM