使用LSTM和ResNet的无监督多模态分类

前言

这是我第一次在csdn上写文章,做的东西只能算是学校的一些作业,如果有什么问题请大家多多指教。
这次做的是一个结合图像和对应短文本的无监督分类模型,使用的数据集来源于nus-wide,是一个来源于flickr的数据集,图片和文本一一对应,并对数据进行了分类

文本特征提取模型

在文本特征方面,使用变分自编码器和BiLSTM结合来提取文本的特征。将文本先用genism转变为向量,每一条文本经过词嵌入的过程后变为形状为(40,100)的矩阵,将矩阵输入变分自编码器中,进行1000轮的训练,获取编码器的输出,即可获得压缩为(100,)的文本特征。将此时的z_mean作为kmeans的输入进行分类,准确率大概是60%不到,效果不能说是非常差,但总的来说挺不咋地。
下面展示一些 乱七八糟的代码

import matplotlib
import keras.callbacks
from keras import metrics
from keras.optimizers import adadelta_v2,adam_v2
from keras.layers import Conv2D, Conv2DTranspose, Input,Conv1D,Conv1DTranspose,MaxPooling1D,UpSampling1D, Flatten, Dense, Lambda, Reshape,LSTM,RepeatVector,TimeDistributed,Bidirectional,Dropout
# from keras.layers import BatchNormalization
from keras.losses import binary_crossentropy
from keras.activations import tanh, softmax
from keras.models import Model
from keras.datasets import mnist
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
from keras.saving.save import load_model
from matplotlib import style
from sklearn.cluster import KMeans
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Load MNIST
from sklearn.model_selection import train_test_split
matplotlib.use('TKAgg')


# Normalize and reshape ============
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        #self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        #self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        #self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        #self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        #self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        #self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        #plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'r', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            #plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'b', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('loss')
        plt.legend(loc="upper right")
        plt.show()
# Norm.

train_x = np.load('')

#print(train_x)
#train_x = np.load('')
train_x = train_x.astype("float32")
train_x=np.random.permutation(train_x)
#train_x=train_x[0:,0:400]
print(train_x.shape)
#train_x=train_x.reshape((1040,1,400))
#print(train_x.shape)
train_y=np.load('')
# Reshape
''
input_shape = (train_x.shape[1],train_x.shape[2])
print(input_shape)



latent_dim = 3


input_txt = Input(shape=input_shape, name='encoder_input')
x=Dropout(rate=0.2)(input_txt)
x=Bidirectional(LSTM(50,activation='relu',recurrent_activation='sigmoid',recurrent_dropout=0,unroll=False,use_bias=False,name='LSTM'))(x)
#x=Bidirectional(LSTM(128,activation=tanh,input_shape=input_shape,name='LSTM'))(x)
#z_test=Dense(3,name="test")(x)
#x=Dense(200,activation='relu',name='Dense1')(x)
#t=Dense(100,activation='relu')(x)
z_mu = Dense(latent_dim, name='latent_mu')(x)  # Mean values of encoded input
z2=Lambda(softmax,output_shape=(latent_dim,),name='z2')(z_mu)
z_sigma = Dense(latent_dim ,name='latent_sigma')(x)  # Std dev. (variance) of encoded input

def sample_z(args):
    z_mu, z_sigma = args
    eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]))
    return z_mu + K.exp(z_sigma / 2) * eps
'''def sample_z(args):#仅做尝试,上面那个才是要用的
    z_mu, z_sigma = args
    #batch_size = tf.shape(z_mu)[0]
    eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]),mean=0,stddev=1)
    return z_mu + z_sigma * eps'''


z = Lambda(sample_z, output_shape=(latent_dim,), name='z')([z_mu, z_sigma])
#t=Dense(latent_dim,name='test',activation=softmax)(z)
#t=Lambda(softmax,output_shape=(latent_dim,))(z)

encoder = Model(input_txt, [ x,z_mu, z_sigma, z,z2], name='encoder')
encoder.summary()

# ================= ###########
# Decoder

decoder_input = Input(shape=(latent_dim,), name='decoder_input')
#decoded=Dense(200)(decoder_input)#仅尝试
decoded = RepeatVector(train_x.shape[1], name='EmbeddingtoTimeSeries')(decoder_input)
decoded = Bidirectional(LSTM(50,name='DecoderLSTM1',activation='relu', return_sequences=True))(decoded) #intermediate dimensions
decoded=Dropout(rate=0.2)(decoded)

decoded=TimeDistributed(Dense(train_x.shape[2]))(decoded)

# Define and summarize decoder model

decoder = Model(decoder_input, decoded, name='decoder')
decoder.summary()

# apply the decoder to the latent sample
z_decoded = decoder(z)


# =========================
# Define custom loss
# VAE is trained using two loss functions reconstruction loss and KL divergence
# Let us add a class to define a custom layer with loss
class CustomLayer(keras.layers.Layer):

    def vae_loss(self, inputs, decoded):
        inputs=K.flatten(inputs)
        decoded=K.flatten(decoded)
        xent_loss = binary_crossentropy(inputs, decoded)
        kl_loss = -5e-2 * K.mean(1 + z_sigma - K.square(z_mu) - K.exp(z_sigma),axis=-1)
        return K.mean(xent_loss+kl_loss)
    


    # add custom loss to the class
    def call(self, inputs):
        x = inputs[0]
        z_decoded = inputs[1]
        loss = self.vae_loss(x, z_decoded)
        self.add_loss(loss, inputs=inputs)
        return x


# apply the custom loss to the input images and the decoded latent distribution sample
y = CustomLayer()([input_txt, z_decoded])
print(type(y))
vae = Model(input_txt, y, name='vae')

# Compile VAE
vae.compile(optimizer='adam', loss=None)#似乎adam效果最好
vae.summary()

# Train autoencoder
#reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, mode='auto')
#earlystopping = keras.callbacks.EarlyStopping(monitor='val_loss', verbose=1, patience=30, mode='auto',restore_best_weights=True)
#vae.fit(train_x,y=None, epochs=1000, batch_size=128,callbacks=[reduce_lr,earlystopping],validation_split=0.2)
history = LossHistory()
vae.fit(train_x,y=None, epochs=500, batch_size=64,callbacks=[history],validation_split=0.2)
history.loss_plot('epoch')
# =================
# Visualize results
# =================
# Visualize inputs mapped to the Latent space
# Remember that we have encoded inputs to latent space dimension = 2.
# Extract z_mu --> first parameter in the result of encoder prediction representing mean

x,mu, _, zz,sof_z = encoder.predict(test_x)#获取编码器的输出,x就是文本特征
#print(mu)
# Plot dim1 and dim2 for mu
if latent_dim==2:
    plt.figure(figsize=(6, 6))  
    plt.scatter(mu[:, 0], mu[:, 1], c=train_y, cmap='brg')
    plt.xlabel('dim 1')
    plt.ylabel('dim 2')
    plt.colorbar()
    plt.show()
else:
    style.use('ggplot')
    fig = plt.figure()
    ax1 = fig.add_subplot(111, projection='3d')
    ax1.scatter(mu[:, 0], mu[:, 1], mu[:, 2], c=train_y, marker='o')
    # defining x, y, z co-ordinates
    ax1.set_xlabel('x-axis')
    ax1.set_ylabel('y-axis')
    ax1.set_zlabel('z-axis')
    plt.show()

est = KMeans(n_clusters=3)
est.fit(mu)
k_label=est.labels_
np.savetxt('D:/vae_txt_k_label.txt',k_label)

图像特征提取

图像特征提取就直接用了预训练的resnet50,先用权重为imagenet的resnet50提取出长度2048的图像特征(这里要把resnet最后的dense层去掉),但这长度和文本特征实在是不搭,所以用自编码器给压缩一下,个人感觉用pca效果不如自编码器,所以用了自编码器,也懒得认真对比了,学校作业就随便搞搞了,总之把图像特征搞成100的长度。
下面是 代码

import matplotlib
from matplotlib import style
import keras.callbacks
from keras import metrics
from keras.optimizer_v2 import adam
from keras.optimizers import adadelta_v2,adam_v2
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape, LSTM, RepeatVector, Bidirectional,\
    TimeDistributed, Bidirectional, Dropout, Conv1D, MaxPooling1D, UpSampling1D, Conv1DTranspose
# from keras.layers import BatchNormalization
from keras.losses import binary_crossentropy, sparse_categorical_crossentropy, categorical_crossentropy, mae, mse
from keras.activations import tanh, relu
from keras.models import Model, Sequential
from keras.datasets import mnist
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
from keras.saving.save import load_model
from sklearn.cluster import KMeans
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Load MNIST
from sklearn.model_selection import train_test_split
matplotlib.use('TKAgg')
feature=np.load("")
feature=feature.astype("float32")
#print(feature)
feature=np.random.permutation(feature)
print(feature.shape)
#print(feature)
#print(feature.dtype)
train_x=feature[0:,0:2048]
print(train_x.shape)
#train_x=train[0]
#train_x=train_x.reshape((1040,1,2048))
train_y=feature[0:,2048:2049]
print(train_y.shape)
#reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss',factor=0.1, patience=30, mode='auto')
#earlystopping = keras.callbacks.EarlyStopping(monitor='val_loss', verbose=1, patience=30,mode='auto',restore_best_weights=True)
# Reshape
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        #self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        #self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        #self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        #self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        #self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        #self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        #plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'r', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            #plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'b', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('loss')
        plt.legend(loc="upper right")
        plt.show()
#input_shape = (train_x.shape[1],train_x.shape[2])
input_shape=(2048,)
#adam1=adam_v2.Adam(learning_rate=0.001,decay=0.001)
model = Sequential()
model.add(Input(shape=input_shape,name="input"))

model.add(Dense(100,activation='relu',name='bidirectional'))
#model.add(Dropout(rate=0.2))
model.add(Dense(3,name='dense1'))

model.add(Dense(100,activation='relu'))

model.add(Dense(2048))
#model.add(Bidirectional(LSTM(50,activation='relu' ,return_sequences=True)))

#model.add(TimeDistributed(Dense(train_x.shape[2])))
#model.compile(optimizer='adam', loss=categorical_crossentropy,metrics=['accuracy'])
model.compile(optimizer='adam', loss=mse)
model.summary()

# fit model

#model.fit(train_x, train_x, epochs=200,callbacks=[reduce_lr,earlystopping], batch_size=64, validation_split=0.2)
history=LossHistory()
model.fit(train_x, train_x, epochs=500, callbacks=[history],batch_size=64)
history.loss_plot('epoch')
encoder=Model(inputs=model.get_layer('bidirectional').input,outputs=model.get_layer('dense1').output)
encoder2=Model(inputs=model.get_layer('bidirectional').input,outputs=model.get_layer('bidirectional').output)

model.save_weights("",encoder2)
mu= encoder.predict(train_x)


style.use('ggplot')
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(mu[:, 0], mu[:, 1],mu[:, 2], c = train_y, marker = 'o')
# defining x, y, z co-ordinates
ax1.set_xlabel('x-axis')
ax1.set_ylabel('y-axis')
ax1.set_zlabel('z-axis')
plt.show()
'''plt.figure(figsize=(6, 6))
plt.scatter(mu[:, 0], mu[:, 1], c=train_y, cmap='brg')
plt.xlabel('dim 1')
plt.ylabel('dim 2')
plt.colorbar()
plt.show()'''
feature=np.load("")
feature=feature.astype("float32")
#print(feature)
#feature=np.random.permutation(feature)
#print(feature.shape)
#print(feature)
#print(feature.dtype)
x=feature[0:,0:2048]
ae_pic_feature=encoder2.predict(x)
est = KMeans(n_clusters=3)
est.fit(mu)
k_label=est.labels_

总体分类

先把上面两个模型的输出用concatenate拼接一下,让长度变成200,然后丢到vae里面,再把输出的结果用kmeans聚个类,基本上就搞定了
下面是 vae代码

import keras
import matplotlib
import tensorflow as tf
from keras import metrics
from keras.backend import softmax
from keras.optimizers import adadelta_v2,adam_v2
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape,LSTM,RepeatVector,TimeDistributed,Bidirectional,Dropout
# from keras.layers import BatchNormalization
from keras.losses import binary_crossentropy
from keras.activations import tanh#,softmax
from keras.models import Model
from keras.datasets import mnist
from keras import backend as K
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
from keras import callbacks
import matplotlib.pyplot as plt
from keras.saving.save import load_model
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Load MNIST
from sklearn.model_selection import train_test_split
matplotlib.use('TKAgg')
#(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Normalize and reshape ============
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        #self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        #self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        #self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        #self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        #self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        #self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        #plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'r', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            #plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'b', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()

# Norm.
'''x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255
x_test = x_test / 255'''
feature=np.load("")#加载之前做好的特征

feature=feature.astype("float32")#使数据类型为float
test_x=feature[0:,0:200]
test_y=feature[0:,200:]
test_x=test_x.reshape((1457,1,200))
print(feature.shape)
feature=np.random.permutation(feature)

#print(feature)
#print(feature.dtype)
train=feature[0:,0:200]


#print(train)
train_x=train.reshape((1457,1,200))

# Reshape
input_shape = (train_x.shape[1],train_x.shape[2])#输入训练的形状为(1,400)
print(input_shape)



latent_dim = 3  # Number of latent dim parameters即为想要的主题数

input_txt = Input(shape=input_shape, name='encoder_input')
x=Dropout(rate=0.3)(input_txt)
x=Bidirectional(LSTM(100,activation=tanh,recurrent_activation='sigmoid',recurrent_dropout=0,unroll=False,use_bias=False,input_shape=input_shape,name='LSTM'))(x)

z_mu = Dense(latent_dim, name='latent_mu')(x)  # Mean values of encoded input
z_sigma = Dense(latent_dim ,name='latent_sigma')(x)  # Std dev. (variance) of encoded input

def sample_z(args):
    z_mu, z_sigma = args
    eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]))
    return z_mu + K.exp(z_sigma / 2) * eps



z = Lambda(sample_z, output_shape=(latent_dim,), name='z')([z_mu, z_sigma])
#z=Lambda(softmax,output_shape=(latent_dim,))(z)

encoder = Model(input_txt, [ z_mu, z_sigma, z,t,z2], name='encoder')
encoder.summary()

# ================= ###########
# Decoder

decoder_input = Input(shape=(latent_dim,), name='decoder_input')
#decoded=Dense(200)(decoder_input)#仅尝试
decoded = RepeatVector(train_x.shape[1], name='EmbeddingtoTimeSeries')(decoder_input)
decoded = Bidirectional(LSTM(100,name='DecoderLSTM1',activation=tanh, return_sequences=True))(decoded) #intermediate dimensions
decoded=Dropout(rate=0.3)(decoded)
decoded=TimeDistributed(Dense(train_x.shape[2]))(decoded)

# Define and summarize decoder model

decoder = Model(decoder_input, decoded, name='decoder')
decoder.summary()

# apply the decoder to the latent sample
z_decoded = decoder(z)


# =========================
# Define custom loss
# VAE is trained using two loss functions reconstruction loss and KL divergence
# Let us add a class to define a custom layer with loss
class CustomLayer(keras.layers.Layer):

    def vae_loss(self, inputs, decoded):
        inputs=K.flatten(inputs)
        decoded=K.flatten(decoded)
        xent_loss = binary_crossentropy(inputs, decoded)
        kl_loss = -5e-2 * K.mean(1 + z_sigma - K.square(z_mu) - K.exp(z_sigma),axis=-1)
        
        return K.mean(xent_loss+kl_loss)
    


    # add custom loss to the class
    def call(self, inputs):
        x = inputs[0]
        z_decoded = inputs[1]
        loss = self.vae_loss(x, z_decoded)
        self.add_loss(loss, inputs=inputs)
        return x


# apply the custom loss to the input images and the decoded latent distribution sample
y = CustomLayer()([input_txt, z_decoded])
print(type(y))
vae = Model(input_txt, y, name='vae')

# Compile VAE
vae.compile(optimizer='adam', loss=None)#似乎adam效果最好
vae.summary()

# Train autoencoder
history = LossHistory()
vae.fit(train_x,y=None, epochs=1000,callbacks=[history], batch_size=64,validation_split=0.2)
history.loss_plot('epoch')
# =================
# Visualize results
# =================
# Visualize inputs mapped to the Latent space
# Remember that we have encoded inputs to latent space dimension = 2.
# Extract z_mu --> first parameter in the result of encoder prediction representing mean

mu, _, zz, t,z_2 = encoder.predict(test_x)#获取编码器的输出
#encoder.save_weights('')
est = KMeans(n_clusters=3)
est.fit(mu)
#print(mu.shape)
#a=est.predict(mu[0:1])
#print(a)
'''joblib.dump(est, 'D:/keyan/source/model/Kmeans11.pkl')

# 载入模型
kmeans = joblib.load('')
labels = kmeans.labels_'''
labels=est.labels_
print(labels)
np.savetxt('',labels)
style.use('ggplot')
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(z_2[:, 0],z_2[:, 1],z_2[:, 2], c = test_y, marker = 'o')
# defining x, y, z co-ordinates
ax1.set_xlabel('x-axis')
ax1.set_ylabel('y-axis')
ax1.set_zlabel('z-axis')
plt.show()
style.use('ggplot')
fig = plt.figure()
ax2 = fig.add_subplot(111, projection='3d')
ax2.scatter(z_2[:, 0], z_2[:, 1],z_2[:, 2], c = labels, marker = 'o')
# defining x, y, z co-ordinates
ax2.set_xlabel('x-axis')
ax2.set_ylabel('y-axis')
ax2.set_zlabel('z-axis')
plt.show()

总结

最后和本身数据集的标签对比下,分类的准确率在0.845,效果就那样吧,只是相对这个做个记录。

新增

在VAE的encoder的z后面加个softmax函数,把z拍到一个平面上就可以当主题模型用了,可以看出不同类别主题的占比

<think>嗯,用户想找一个解决多模态分类问题的简单基线方法或模型。我需要先理解什么是多模态分类问题。多模态应该是指数据来自不同的模态,比如文本、图像、音频等,而多分类则是目标变量有多个类别需要预测。简单基线方法的话,可能是指容易实现、计算资源要求不高的模型。 首先,用户可能希望有一个整合不同模态数据的方法,然后进行分类。常见的做法可能有早期融合、晚期融合,或者中间融合。早期融合就是把不同模态的特征在输入层拼接起来,然后输入到一个分类器里。这种方法简单,但可能忽略模态间的复杂交互。比如,引用中提到Qwen-VL就是结合了文本视觉模型,所以可能需要类似的结构。 另一个方法是使用多模态Transformer,比如CrossAttention,这属于中间融合。引用里提到CrossAttention允许模型在处理一个序列时关注另一个序列,这可能适用于多模态任务。比如CLIP模型就是处理图像文本的对齐,可能可以借鉴。 然后,用户需要的是简单的基线,所以可能需要更轻量级的模型。比如,特征拼接后接一个全连接层,或者使用预训练的单模态模型提取特征,再融合。比如,用ResNet提取图像特征,BERT提取文本特征,然后拼接起来输入分类器。 另外,引用中有一篇关于多模态语言模型做目标检测的文章,方法是将检测输出转为文本形式,微调多模态模型。这可能类似将不同模态的数据转换为统一表示,然后进行分类。这种方法是否适用呢?可能需要将各个模态的特征编码成文本或向量,然后输入到分类模型里。 还需要考虑数据模态的类型,如果包含图像文本,可能需要分别处理这两个模态的特征,再融合。比如,使用预训练的视觉模型语言模型,然后融合它们的特征向量。 可能还需要考虑不同融合方式的优缺点。早期融合计算量大,但可能捕捉更多交互;晚期融合更灵活,但可能丢失模态间细节。中间融合,如CrossAttention,可能平衡两者,但实现稍复杂。 用户可能需要一个代码示例,比如用PyTorch实现早期融合,或者用Hugging Face的Transformer库实现CrossAttention。需要确保示例简单,符合用户需求。 另外,引用里提到原生多模态模型多个单模型拼接的区别。用户可能倾向使用后者作为基线,因为实现起来更简单。比如,分别用单模态模型提取特征,再拼接,然后训练一个分类器。这种方法资源要求低,适合作为基线。 总结可能的方案: 1. 特征拼接(早期融合) 2. 投票或加权平均(晚期融合) 3. 使用多模态Transformer(如CrossAttention) 4. 预训练单模态模型+微调分类层 需要评估哪种最简单。特征拼接晚期融合应该是最容易实现的。比如,用预训练的ResNetBERT提取特征,拼接后输入全连接层,代码示例可以展示这一点。 可能的问题:如何处理不同模态的特征维度不同?可能需要降维或标准化。比如,对图像特征文本特征分别进行PCA或LayerNorm,再拼接。 另外,数据预处理部分也需要考虑,比如图像如何resize,文本如何分词。但用户可能希望简化这部分,使用现有的预训练模型处理。 最后,需要给出相关的问题,比如如何选择融合方式,如何处理模态不平衡,如何评估多模态模型性能等。</think>### 多模态分类问题的简单基线方法 #### 1. **特征拼接+单分类器(早期融合)** 将不同模态的特征提取后拼接为一个联合特征向量,再输入分类器。这是最简单的基线方法。 - **实现步骤**: 1. 对每个模态使用预训练模型提取特征(例如:图像用ResNet,文本用BERT,音频用VGGish)。 2. 将特征向量归一化后拼接,例如:$f_{\text{joint}} = [f_{\text{image}}; f_{\text{text}}; f_{\text{audio}}]$。 3. 输入全连接层进行分类,例如:$y = \text{Softmax}(W \cdot f_{\text{joint}} + b)$。 ```python import torch from transformers import BertModel, BertTokenizer from torchvision.models import resnet50 # 图像特征提取 image_model = resnet50(pretrained=True) image_feature = image_model(torch.rand(1, 3, 224, 224)) # 输出维度: 1000 # 文本特征提取 text_model = BertModel.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') text_input = tokenizer("example text", return_tensors="pt") text_feature = text_model(**text_input).last_hidden_state.mean(dim=1) # 输出维度: 768 # 特征拼接与分类 joint_feature = torch.cat([image_feature, text_feature], dim=1) # 合并后维度: 1768 classifier = torch.nn.Linear(1768, num_classes) output = classifier(joint_feature) ``` #### 2. **多模态Transformer(中间融合)** 使用CrossAttention机制融合不同模态特征,适合捕捉模态间复杂关系[^2]。 - **实现步骤**: 1. 为每个模态分配独立的编码器(如ViT、LSTM)。 2. 通过跨模态注意力层交互特征,例如:文本作为Query,图像作为Key/Value。 3. 将融合后的特征输入分类层。 ```python from transformers import ViTModel, BertModel, BertTokenizer import torch.nn as nn class CrossModalClassifier(nn.Module): def __init__(self, num_classes): super().__init__() self.image_encoder = ViTModel.from_pretrained('google/vit-base-patch16-224') self.text_encoder = BertModel.from_pretrained('bert-base-uncased') self.cross_attention = nn.MultiheadAttention(embed_dim=768, num_heads=8) self.classifier = nn.Linear(768, num_classes) def forward(self, image, text_input): image_feature = self.image_encoder(image).last_hidden_state.mean(dim=1) # 维度: 768 text_feature = self.text_encoder(**text_input).last_hidden_state # 维度: (seq_len, 768) # CrossAttention: 文本作为Query,图像作为Key/Value fused_feature, _ = self.cross_attention( query=text_feature, key=image_feature.unsqueeze(0), value=image_feature.unsqueeze(0) ) output = self.classifier(fused_feature.mean(dim=1)) return output ``` #### 3. **多模态语言模型微调(端到端方案)** 直接使用现有多模态模型(如Qwen-VL[^1]、CLIP[^2]),将分类任务转化为文本生成任务。例如,将标签映射为文本描述,通过生成结果判断类别。 - **示例流程**: ```python from transformers import AutoModelForCausalLM, AutoProcessor model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL") processor = AutoProcessor.from_pretrained("Qwen/Qwen-VL") # 输入图像文本提示(如"这张图片的类别是:") inputs = processor(images=image, text="这张图片的类别是:", return_tensors="pt") outputs = model.generate(**inputs) predicted_class = processor.decode(outputs[0], skip_special_tokens=True) ``` #### 4. **加权投票或平均(晚期融合)** 对每个模态单独训练分类器,最终通过加权投票或概率平均得到结果。 - **优点**:实现简单,适合模态差异大的场景[^4]。 --- ### 关键设计建议 1. **模态对齐**:若模态间差异较大(如文本与遥感图像[^4]),需对特征进行归一化或降维。 2. **数据量影响**:小数据时推荐特征拼接,大数据可尝试端到端微调。 3. **评估方案**:需设计跨模态消融实验(如仅用图像/文本/多模态对比)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值