ResNet和LSTM的结合已经成为了深度学习领域的一个重要创新,它能够同时处理图像的空间特征和时间序列数据。
具体来说,通过结合ResNet在提取空间特征上的强大能力和LSTM在处理时间序列数据上的优势,我们可以在处理同时包含空间和时间信息的复杂数据时,实现更高效、更准确的分析和预测。这种结合不仅增强了模型的性能,还扩展了其应用范围。
比如一种用来预测癫痫发作的预训练模型的方法,该方法结合了监督对比学习和混合模型,包括ResNet和LSTM。在CHB-MIT数据集上的实验表明,该模型在15分钟预发作期的预测中展现了SOTA性能,准确率达到91.90%,敏感性为89.64%。
本文整理了10种最新的ResNet+LSTM结合创新方案,并简单提炼了可参考的方法以及创新点,希望能给各位的论文添砖加瓦。
论文原文需要的同学看文末
A ResNet‑LSTM hybrid model for predicting epileptic seizures using a pretrained model with supervised contrastive learning
方法:本文提出了一种利用预训练模型、监督对比学习和结合ResNet和LSTM的混合模型来预测癫痫发作的方法,并通过STFT将数据转化为频谱图像进行预处理,解决了EEG数据的复杂性和不规则性问题,进而提高了预测准确性。