GSGEN: 基于高斯泼溅的文本到3D生成项目教程
gsgen Text-to-3D using Gaussian Splatting 项目地址: https://gitcode.com/gh_mirrors/gs/gsgen
1. 项目介绍
GSGEN(Gaussian Splatting based text-to-3D GENeration)是一个基于高斯泼溅技术的文本到3D生成项目。该项目旨在通过利用3D高斯泼溅这一最新的先进表示方法,生成多视角一致且细节丰富的3D资产。与传统方法相比,GSGEN能够生成更准确的几何形状和更高的保真度,解决了以往方法中缺乏3D先验和适当表示的问题。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了Python环境,然后通过以下命令安装项目所需的依赖:
pip install -r requirements.txt
2.2 构建高斯泼溅扩展
接下来,构建高斯泼溅的扩展模块:
cd gs
./build.sh
2.3 开始训练
使用以下命令启动训练,并指定一个文本提示:
python main.py --config-name=base prompt="<你的提示文本>"
例如,如果你想生成一个由寿司制成的汽车,可以使用以下命令:
python main.py --config-name=base prompt="A car made out of sushi"
2.4 使用Point-E初始化
如果你想使用Point-E进行初始化,可以使用以下命令:
python main.py --config-name=base prompt="<你的提示文本>" init_prompt="<Point-E提示文本>"
2.5 查看结果
训练完成后,你可以通过以下命令启动查看器来查看生成的3D模型:
python vis.py <路径-到-ckpt> --port <端口>
3. 应用案例和最佳实践
3.1 应用案例
GSGEN可以应用于多个领域,例如:
- 游戏开发:生成高质量的游戏资产,如角色、道具和场景。
- 电影和动画:生成逼真的3D模型,用于电影特效和动画制作。
- 虚拟现实(VR)和增强现实(AR):生成用于VR和AR应用的3D模型。
3.2 最佳实践
- 优化提示文本:使用清晰、具体的提示文本可以生成更符合预期的3D模型。
- 调整训练参数:根据具体需求调整训练参数,如学习率、批量大小等,以获得最佳效果。
- 使用预训练模型:利用预训练模型可以加速训练过程并提高生成质量。
4. 典型生态项目
GSGEN的开发和实现基于以下开源项目:
- Stable DreamFusion:一个基于扩散模型的3D生成项目。
- threestudio:一个用于3D建模和渲染的开源工具。
- 3D Gaussian Splatting:一个用于3D高斯泼溅表示的开源项目。
- Point-E:一个用于点云生成的开源项目。
- Shap-E:一个用于形状生成的开源项目。
- Make-it-3D:一个用于3D模型生成的开源项目。
这些项目共同构成了GSGEN的技术生态,为3D生成提供了强大的支持。
gsgen Text-to-3D using Gaussian Splatting 项目地址: https://gitcode.com/gh_mirrors/gs/gsgen