RAGChecker使用教程

RAGChecker使用教程

RAGChecker RAGChecker: A Fine-grained Framework For Diagnosing RAG RAGChecker 项目地址: https://gitcode.com/gh_mirrors/ra/RAGChecker

1. 项目介绍

RAGChecker 是一个先进的自动化评估框架,专为评估和诊断检索增强生成(Retrieval-Augmented Generation, RAG)系统而设计。它提供了一套全面的指标和工具,用于对RAG性能进行深入分析。

RAGChecker 的特点包括:

  • 整体评估:提供整体指标,用于评估整个RAG管道。
  • 诊断指标:提供针对检索组件的诊断检索指标和针对生成组件的诊断生成指标,这些指标为针对性的改进提供了宝贵见解。
  • 细粒度评估:利用声明级别的蕴含操作进行细粒度评估。
  • 基准数据集:包含4000个问题,涵盖10个领域的全面RAG基准数据集(即将推出)。
  • 元评估:提供人工标注的偏好数据集,用于评估RAGChecker结果与人类判断的相关性。

2. 项目快速启动

环境设置

首先,确保安装了以下依赖:

pip install ragchecker
python -m spacy download en_core_web_sm

运行检查管道(CLI)

请将您的数据处理为与 examples/checking_inputs.json 相同的格式。每个查询的唯一必需标注是“真实答案(gt_answer)”。

{
  "results": [
    {
      "query_id": "<query id>",
      "query": "<input query>",
      "gt_answer": "<ground truth answer>",
      "response": "<response generated by the RAG generator>",
      "retrieved_context": [
        {
          "doc_id": "<doc id>",
          "text": "<content of the chunk>"
        },
        ...
      ]
    },
    ...
  ]
}

使用以下命令运行检查管道,检查结果以及中间结果将保存到 --output_path 指定的文件中:

ragchecker-cli \
--input_path=examples/checking_inputs.json \
--output_path=examples/checking_outputs.json \
--extractor_name=bedrock/meta.llama3-1-70b-instruct-v1:0 \
--checker_name=bedrock/meta.llama3-1-70b-instruct-v1:0 \
--batch_size_extractor=64 \
--batch_size_checker=64 \
--metrics all_metrics

如果需要逐个检查(更慢但稍微准确一些),取消注释 --disable_joint_check 行。

运行检查管道(Python)

from ragchecker import RAGResults, RAGChecker
from ragchecker.metrics import all_metrics

# 从json/dict初始化ragresults
with open('examples/checking_inputs.json') as fp:
    rag_results = RAGResults.from_json(fp.read())

# 设置评估器
evaluator = RAGChecker(
    extractor_name="bedrock/meta.llama3-1-70b-instruct-v1:0",
    checker_name="bedrock/meta.llama3-1-70b-instruct-v1:0",
    batch_size_extractor=32,
    batch_size_checker=32
)

# 使用选定指标或某些组评估结果,例如retriever_metrics, generator_metrics, all_metrics
evaluator.evaluate(rag_results, all_metrics)

print(rag_results)

3. 应用案例和最佳实践

(本节将介绍RAGChecker在实际应用中的案例和最佳实践,内容待补充。)

4. 典型生态项目

(本节将介绍与RAGChecker相关的典型生态项目,内容待补充。)

RAGChecker RAGChecker: A Fine-grained Framework For Diagnosing RAG RAGChecker 项目地址: https://gitcode.com/gh_mirrors/ra/RAGChecker

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

班民航Small

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值